Interactive Segmentation for Medical Images Using Spatial Modeling Mamba
Interactive segmentation methods utilize user-provided positive and negative clicks to guide the model in accurately segmenting target objects. Compared to fully automatic medical image segmentation, these methods can achieve higher segmentation accuracy with limited image data, demonstrating signif...
Autors principals: | Yuxin Tang, Yu Li, Hua Zou, Xuedong Zhang |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
MDPI AG
2024-10-01
|
Col·lecció: | Information |
Matèries: | |
Accés en línia: | https://www.mdpi.com/2078-2489/15/10/633 |
Ítems similars
-
HFE-Mamba: High-Frequency Enhanced Mamba Network for Efficient Segmentation of Left Ventricle in Pediatric Echocardiograms
per: Zi Ye, et al.
Publicat: (2024-01-01) -
DeMambaNet: Deformable Convolution and Mamba Integration Network for High-Precision Segmentation of Ambiguously Defined Dental Radicular Boundaries
per: Binfeng Zou, et al.
Publicat: (2024-07-01) -
Cascade Residual Multiscale Convolution and Mamba-Structured UNet for Advanced Brain Tumor Image Segmentation
per: Rui Zhou, et al.
Publicat: (2024-04-01) -
Link Aggregation for Skip Connection–Mamba: Remote Sensing Image Segmentation Network Based on Link Aggregation Mamba
per: Qi Zhang, et al.
Publicat: (2024-09-01) -
A mixed Mamba U-net for prostate segmentation in MR images
per: Qiu Du, et al.
Publicat: (2024-08-01)