Interactive Segmentation for Medical Images Using Spatial Modeling Mamba
Interactive segmentation methods utilize user-provided positive and negative clicks to guide the model in accurately segmenting target objects. Compared to fully automatic medical image segmentation, these methods can achieve higher segmentation accuracy with limited image data, demonstrating signif...
Những tác giả chính: | Yuxin Tang, Yu Li, Hua Zou, Xuedong Zhang |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
MDPI AG
2024-10-01
|
Loạt: | Information |
Những chủ đề: | |
Truy cập trực tuyến: | https://www.mdpi.com/2078-2489/15/10/633 |
Những quyển sách tương tự
-
HFE-Mamba: High-Frequency Enhanced Mamba Network for Efficient Segmentation of Left Ventricle in Pediatric Echocardiograms
Bằng: Zi Ye, et al.
Được phát hành: (2024-01-01) -
DeMambaNet: Deformable Convolution and Mamba Integration Network for High-Precision Segmentation of Ambiguously Defined Dental Radicular Boundaries
Bằng: Binfeng Zou, et al.
Được phát hành: (2024-07-01) -
Cascade Residual Multiscale Convolution and Mamba-Structured UNet for Advanced Brain Tumor Image Segmentation
Bằng: Rui Zhou, et al.
Được phát hành: (2024-04-01) -
Link Aggregation for Skip Connection–Mamba: Remote Sensing Image Segmentation Network Based on Link Aggregation Mamba
Bằng: Qi Zhang, et al.
Được phát hành: (2024-09-01) -
A mixed Mamba U-net for prostate segmentation in MR images
Bằng: Qiu Du, et al.
Được phát hành: (2024-08-01)