Sharp Liouville Theorems

Consider the equation div⁡(φ2⁢∇⁡σ)=0{\operatorname{div}(\varphi^{2}\nabla\sigma)=0} in ℝN{\mathbb{R}^{N}}, where φ>0{\varphi>0}. Berestycki, Caffarelli and Nirenberg proved in [H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded dom...

Full description

Bibliographic Details
Main Author: Villegas Salvador
Format: Article
Language:English
Published: De Gruyter 2021-02-01
Series:Advanced Nonlinear Studies
Subjects:
Online Access:https://doi.org/10.1515/ans-2020-2111
_version_ 1811280135643463680
author Villegas Salvador
author_facet Villegas Salvador
author_sort Villegas Salvador
collection DOAJ
description Consider the equation div⁡(φ2⁢∇⁡σ)=0{\operatorname{div}(\varphi^{2}\nabla\sigma)=0} in ℝN{\mathbb{R}^{N}}, where φ>0{\varphi>0}. Berestycki, Caffarelli and Nirenberg proved in [H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 25 1997, 69–94] that if there exists C>0{C>0} such that ∫BR(φ⁢σ)2≤C⁢R2\int_{B_{R}}(\varphi\sigma)^{2}\leq CR^{2} for every R≥1{R\geq 1}, then σ is necessarily constant. In this paper, we provide necessary and sufficient conditions on 0<Ψ∈C⁢([1,∞)){0<\Psi\in C([1,\infty))} for which this result remains true if we replace C⁢R2{CR^{2}} by Ψ⁢(R){\Psi(R)} in any dimension N. In the case of the convexity of Ψ for large R>1{R>1} and Ψ′>0{\Psi^{\prime}>0}, this condition is equivalent to ∫1∞1Ψ′=∞.\int_{1}^{\infty}\frac{1}{\Psi^{\prime}}=\infty.
first_indexed 2024-04-13T01:08:03Z
format Article
id doaj.art-c5ad475d3fe745de8bef02db17ba1223
institution Directory Open Access Journal
issn 1536-1365
2169-0375
language English
last_indexed 2024-04-13T01:08:03Z
publishDate 2021-02-01
publisher De Gruyter
record_format Article
series Advanced Nonlinear Studies
spelling doaj.art-c5ad475d3fe745de8bef02db17ba12232022-12-22T03:09:16ZengDe GruyterAdvanced Nonlinear Studies1536-13652169-03752021-02-012119510510.1515/ans-2020-2111Sharp Liouville TheoremsVillegas Salvador0Departamento de Análisis Matemático, Universidad de Granada, 18071Granada, SpainConsider the equation div⁡(φ2⁢∇⁡σ)=0{\operatorname{div}(\varphi^{2}\nabla\sigma)=0} in ℝN{\mathbb{R}^{N}}, where φ>0{\varphi>0}. Berestycki, Caffarelli and Nirenberg proved in [H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 25 1997, 69–94] that if there exists C>0{C>0} such that ∫BR(φ⁢σ)2≤C⁢R2\int_{B_{R}}(\varphi\sigma)^{2}\leq CR^{2} for every R≥1{R\geq 1}, then σ is necessarily constant. In this paper, we provide necessary and sufficient conditions on 0<Ψ∈C⁢([1,∞)){0<\Psi\in C([1,\infty))} for which this result remains true if we replace C⁢R2{CR^{2}} by Ψ⁢(R){\Psi(R)} in any dimension N. In the case of the convexity of Ψ for large R>1{R>1} and Ψ′>0{\Psi^{\prime}>0}, this condition is equivalent to ∫1∞1Ψ′=∞.\int_{1}^{\infty}\frac{1}{\Psi^{\prime}}=\infty.https://doi.org/10.1515/ans-2020-2111liouville theoremsde giorgi’s conjecture35b08 35b35 35b53 35j91
spellingShingle Villegas Salvador
Sharp Liouville Theorems
Advanced Nonlinear Studies
liouville theorems
de giorgi’s conjecture
35b08 35b35 35b53 35j91
title Sharp Liouville Theorems
title_full Sharp Liouville Theorems
title_fullStr Sharp Liouville Theorems
title_full_unstemmed Sharp Liouville Theorems
title_short Sharp Liouville Theorems
title_sort sharp liouville theorems
topic liouville theorems
de giorgi’s conjecture
35b08 35b35 35b53 35j91
url https://doi.org/10.1515/ans-2020-2111
work_keys_str_mv AT villegassalvador sharpliouvilletheorems