Summary: | Background: Interleukin (IL)-26 is a neutrophil-mobilizing and bactericidal cytokine that is enhanced in human airways in vivo in response to endotoxin from Gram-negative bacteria. This cytokine is also enhanced in the airways during exacerbations of chronic obstructive pulmonary disease (COPD). Here, we investigated whether human primary lung fibroblasts (HLF) release IL-26 constitutively and in response to TLR4 stimulation by endotoxin and characterized the effects of bronchodilatory and anti-inflammatory drugs utilized in COPD.Methods: The HLF were stimulated with different concentrations of endotoxin. Cells were also treated with different concentrations of bronchodilatory and anti-inflammatory drugs, with and without endotoxin stimulation. Cytokine protein concentrations were quantified in the cell-free conditioned media [enzyme-linked immunosorbent assay (ELISA)], and the phosphorylation levels of intracellular signaling molecules were determined (phosphoELISA).Results: Whereas HLF displayed constitutive release of IL-26 into the conditioned medium, endotoxin markedly enhanced this release, as well as that of IL-6 and IL-8. This cytokine release was paralleled by increased phosphorylation of the intracellular signaling molecules NF-κB, c-Jun N-terminal kinase (JNK) 1-3, p38, and extracellular signal-regulated kinase (ERK) 1/2. The glucocorticoid hydrocortisone caused substantial inhibition of the endotoxin-induced release of IL-26, IL-6, and IL-8, an effect paralleled by a decrease of the phosphorylation of NF-κB, p38, and ERK1/2. The muscarinic receptor antagonist (MRA) tiotropium, but not aclidinium, caused minor inhibition of the endotoxin-induced release of IL-26 and IL-8, paralleled by a decreased phosphorylation of NF-κB. The β2-adrenoceptor agonist salbutamol caused modest inhibition of the endotoxin-induced release of IL-26 and IL-8, paralleled by a decreased phosphorylation of NF-κB, JNK1-3, and p38. Similar pharmacological effects were observed for the constitutive release of IL-26.Conclusions: The HLF constitute an abundant source of IL-26 that may contribute to local host defense against Gram-negative bacteria. Among the tested drugs, the glucocorticoid displayed the most powerful inhibitory effect, affecting the NF-κB, p38, and ERK1/2 signaling pathways. Whether or not this inhibition of IL-26 contributes to an increased risk for local infections in COPD requires further evaluation.
|