Applications of Shell-like Curves Connected with Fibonacci Numbers

We introduce a new subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">J</mi><msup><mrow><mo>Σ</mo></mrow><mrow><mi&...

Full description

Bibliographic Details
Main Authors: Ala Amourah, Ibtisam Aldawish, Basem Aref Frasin, Tariq Al-Hawary
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/7/639
Description
Summary:We introduce a new subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">J</mi><msup><mrow><mo>Σ</mo></mrow><mrow><mi>η</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>μ</mi></mrow></msup><mrow><mo>(</mo><mover accent="true"><mi>p</mi><mo>˜</mo></mover><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of bi-univalent functions, defined by shell-like curves connected with Fibonacci numbers. Our main results in this paper include estimates of the Taylor–Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="|" close="|"><msub><mi>a</mi><mn>2</mn></msub></mfenced></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="|" close="|"><msub><mi>a</mi><mn>3</mn></msub></mfenced></semantics></math></inline-formula> for functions in this subclass, as well as solutions to Fekete–Szegö functional problems. We also show novel outcomes resulting from the specialization of the parameters used in our main results.
ISSN:2075-1680