Applications of Shell-like Curves Connected with Fibonacci Numbers

We introduce a new subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">J</mi><msup><mrow><mo>Σ</mo></mrow><mrow><mi&...

Full description

Bibliographic Details
Main Authors: Ala Amourah, Ibtisam Aldawish, Basem Aref Frasin, Tariq Al-Hawary
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/7/639
_version_ 1797590321302863872
author Ala Amourah
Ibtisam Aldawish
Basem Aref Frasin
Tariq Al-Hawary
author_facet Ala Amourah
Ibtisam Aldawish
Basem Aref Frasin
Tariq Al-Hawary
author_sort Ala Amourah
collection DOAJ
description We introduce a new subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">J</mi><msup><mrow><mo>Σ</mo></mrow><mrow><mi>η</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>μ</mi></mrow></msup><mrow><mo>(</mo><mover accent="true"><mi>p</mi><mo>˜</mo></mover><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of bi-univalent functions, defined by shell-like curves connected with Fibonacci numbers. Our main results in this paper include estimates of the Taylor–Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="|" close="|"><msub><mi>a</mi><mn>2</mn></msub></mfenced></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="|" close="|"><msub><mi>a</mi><mn>3</mn></msub></mfenced></semantics></math></inline-formula> for functions in this subclass, as well as solutions to Fekete–Szegö functional problems. We also show novel outcomes resulting from the specialization of the parameters used in our main results.
first_indexed 2024-03-11T01:18:55Z
format Article
id doaj.art-c5be427d3e2148aea2ad03bbdfa611cc
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T01:18:55Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-c5be427d3e2148aea2ad03bbdfa611cc2023-11-18T18:17:22ZengMDPI AGAxioms2075-16802023-06-0112763910.3390/axioms12070639Applications of Shell-like Curves Connected with Fibonacci NumbersAla Amourah0Ibtisam Aldawish1Basem Aref Frasin2Tariq Al-Hawary3Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid 21110, JordanDepartment of Mathematics and Statistics, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh 11566, Saudi ArabiaFaculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq 25113, JordanDepartment of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, JordanWe introduce a new subclass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">J</mi><msup><mrow><mo>Σ</mo></mrow><mrow><mi>η</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>μ</mi></mrow></msup><mrow><mo>(</mo><mover accent="true"><mi>p</mi><mo>˜</mo></mover><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of bi-univalent functions, defined by shell-like curves connected with Fibonacci numbers. Our main results in this paper include estimates of the Taylor–Maclaurin coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="|" close="|"><msub><mi>a</mi><mn>2</mn></msub></mfenced></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="|" close="|"><msub><mi>a</mi><mn>3</mn></msub></mfenced></semantics></math></inline-formula> for functions in this subclass, as well as solutions to Fekete–Szegö functional problems. We also show novel outcomes resulting from the specialization of the parameters used in our main results.https://www.mdpi.com/2075-1680/12/7/639Fekete–Szegö problembi-univalent functionsFibonacci numbersanalytic functionsshell-like curve
spellingShingle Ala Amourah
Ibtisam Aldawish
Basem Aref Frasin
Tariq Al-Hawary
Applications of Shell-like Curves Connected with Fibonacci Numbers
Axioms
Fekete–Szegö problem
bi-univalent functions
Fibonacci numbers
analytic functions
shell-like curve
title Applications of Shell-like Curves Connected with Fibonacci Numbers
title_full Applications of Shell-like Curves Connected with Fibonacci Numbers
title_fullStr Applications of Shell-like Curves Connected with Fibonacci Numbers
title_full_unstemmed Applications of Shell-like Curves Connected with Fibonacci Numbers
title_short Applications of Shell-like Curves Connected with Fibonacci Numbers
title_sort applications of shell like curves connected with fibonacci numbers
topic Fekete–Szegö problem
bi-univalent functions
Fibonacci numbers
analytic functions
shell-like curve
url https://www.mdpi.com/2075-1680/12/7/639
work_keys_str_mv AT alaamourah applicationsofshelllikecurvesconnectedwithfibonaccinumbers
AT ibtisamaldawish applicationsofshelllikecurvesconnectedwithfibonaccinumbers
AT basemareffrasin applicationsofshelllikecurvesconnectedwithfibonaccinumbers
AT tariqalhawary applicationsofshelllikecurvesconnectedwithfibonaccinumbers