Onsite Identification of Air Pollutants in Plastic Sports-Field Using Portable Gas ChromatographyMass Spectrometry via Drone-Based Solid-Phase Microextraction Sampling
Plastic sports-fields are commonly used in communities, schools and other public places nowadays, which can offer positive benefits to fitness and sports. Plastic sports-fields are usually made of petroleum-based materials. Under high-temperature weather, various potentially harmful volatile organic...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Editorial Board of Journal of Chinese Mass Spectrometry Society
2023-03-01
|
Series: | Zhipu Xuebao |
Subjects: | |
Online Access: | http://www.jcmss.com.cn/CN/article/openArticlePDF.jsp?attachType=PDF&id=3140 |
_version_ | 1797851466571972608 |
---|---|
author | MO Wen-zheng1 ZOU Ying-tong2 HUANG Qiao-yun1 CHEN Wei-ni1 LI Si-jie2 LI Jia-jia2 QIAO Jia2 HU Bin1 |
author_facet | MO Wen-zheng1 ZOU Ying-tong2 HUANG Qiao-yun1 CHEN Wei-ni1 LI Si-jie2 LI Jia-jia2 QIAO Jia2 HU Bin1 |
author_sort | MO Wen-zheng1 |
collection | DOAJ |
description | Plastic sports-fields are commonly used in communities, schools and other public places nowadays, which can offer positive benefits to fitness and sports. Plastic sports-fields are usually made of petroleum-based materials. Under high-temperature weather, various potentially harmful volatile organic compounds (VOCs) can be released to the ambient air, which pose a potential health risk to people who are on the plastic sports-field or living near the plastic sports-field. In our previous work, an analytical tool for onsite investigation of air pollutants was developed by drone-based solid-phase microextraction (drone-SPME) coupled with portable gas chromatographymass spectrometry (PGC-MS). In this work, the drome-SPME-PGC-MS method was further used to analyze the air pollutants in the plastic sports-field. The volatile air pollutants such as benzothiazole and benzene were identified by NIST standard spectra and standard substances. The results showed that benzothiazole was released from the ground material of plastic sports-fields, while benzene was mainly released from the paint that was painted at the fence of plastic sports-fields. Analytical performances, such as sensitivity, reproducibility, and quantitation were investigated using drone-SPME-PGC-MS. The relative standard deviations (RSDs) of benzene (1.0 μg/L) and benzothiazole (1.0 μg/L) were 13.2% and 11.4% (n=6), respectively, indicating the high reliability of drone-SPME for air sampling. The limits of detection (LODs) of benzene and benzothiazole were 0.036 μg/L and 0.088 μg/L (S/N=3), respectively, showing good sensitivity for air analysis. The different concentrations of benzene and benzothiazole in a glass container were detected using this method, showing good linear responses (benzene: 0.044-2.20 μg/L, R2=0.992 9; benzothiazoles: 0.10-2.10 μg/L, R2=0.993 7). Moreover, benzene and benzothiazole in the air at different plastic sportsfields were quantitative detected by established drone-SPME-PGC-MS. Furthermore, the releases and distributions of benzothiazole and benzene at different temperatures (33, 12 ℃) and different heights (0.5-40 m) were investigated, showing that these air pollutants were mainly distributed at the ground layer (≤ 5 m) and were mainly released at high-temperature conditions (33 ℃). Overall, the drone-SPME-PGC-MS is a promising analytical method for the onsite investigation of air pollutants at the plastic sports-fields. |
first_indexed | 2024-04-09T19:17:13Z |
format | Article |
id | doaj.art-c5c4b78128784053aa9bb8076c1911e3 |
institution | Directory Open Access Journal |
issn | 1004-2997 |
language | English |
last_indexed | 2024-04-09T19:17:13Z |
publishDate | 2023-03-01 |
publisher | Editorial Board of Journal of Chinese Mass Spectrometry Society |
record_format | Article |
series | Zhipu Xuebao |
spelling | doaj.art-c5c4b78128784053aa9bb8076c1911e32023-04-06T02:37:54ZengEditorial Board of Journal of Chinese Mass Spectrometry SocietyZhipu Xuebao1004-29972023-03-0144225125810.7538/zpxb.2022.0205Onsite Identification of Air Pollutants in Plastic Sports-Field Using Portable Gas ChromatographyMass Spectrometry via Drone-Based Solid-Phase Microextraction SamplingMO Wen-zheng10ZOU Ying-tong21HUANG Qiao-yun12CHEN Wei-ni13LI Si-jie24LI Jia-jia25QIAO Jia26HU Bin171. Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University2. Guangzhou Hexin Instrument Co., Ltd.1. Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University1. Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University2. Guangzhou Hexin Instrument Co., Ltd.2. Guangzhou Hexin Instrument Co., Ltd.2. Guangzhou Hexin Instrument Co., Ltd.1. Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan UniversityPlastic sports-fields are commonly used in communities, schools and other public places nowadays, which can offer positive benefits to fitness and sports. Plastic sports-fields are usually made of petroleum-based materials. Under high-temperature weather, various potentially harmful volatile organic compounds (VOCs) can be released to the ambient air, which pose a potential health risk to people who are on the plastic sports-field or living near the plastic sports-field. In our previous work, an analytical tool for onsite investigation of air pollutants was developed by drone-based solid-phase microextraction (drone-SPME) coupled with portable gas chromatographymass spectrometry (PGC-MS). In this work, the drome-SPME-PGC-MS method was further used to analyze the air pollutants in the plastic sports-field. The volatile air pollutants such as benzothiazole and benzene were identified by NIST standard spectra and standard substances. The results showed that benzothiazole was released from the ground material of plastic sports-fields, while benzene was mainly released from the paint that was painted at the fence of plastic sports-fields. Analytical performances, such as sensitivity, reproducibility, and quantitation were investigated using drone-SPME-PGC-MS. The relative standard deviations (RSDs) of benzene (1.0 μg/L) and benzothiazole (1.0 μg/L) were 13.2% and 11.4% (n=6), respectively, indicating the high reliability of drone-SPME for air sampling. The limits of detection (LODs) of benzene and benzothiazole were 0.036 μg/L and 0.088 μg/L (S/N=3), respectively, showing good sensitivity for air analysis. The different concentrations of benzene and benzothiazole in a glass container were detected using this method, showing good linear responses (benzene: 0.044-2.20 μg/L, R2=0.992 9; benzothiazoles: 0.10-2.10 μg/L, R2=0.993 7). Moreover, benzene and benzothiazole in the air at different plastic sportsfields were quantitative detected by established drone-SPME-PGC-MS. Furthermore, the releases and distributions of benzothiazole and benzene at different temperatures (33, 12 ℃) and different heights (0.5-40 m) were investigated, showing that these air pollutants were mainly distributed at the ground layer (≤ 5 m) and were mainly released at high-temperature conditions (33 ℃). Overall, the drone-SPME-PGC-MS is a promising analytical method for the onsite investigation of air pollutants at the plastic sports-fields.http://www.jcmss.com.cn/CN/article/openArticlePDF.jsp?attachType=PDF&id=3140dronesolid-phase microextraction (spme)portable mass spectrometryplastic sports-fieldvertical distributionair pollutants |
spellingShingle | MO Wen-zheng1 ZOU Ying-tong2 HUANG Qiao-yun1 CHEN Wei-ni1 LI Si-jie2 LI Jia-jia2 QIAO Jia2 HU Bin1 Onsite Identification of Air Pollutants in Plastic Sports-Field Using Portable Gas ChromatographyMass Spectrometry via Drone-Based Solid-Phase Microextraction Sampling Zhipu Xuebao drone solid-phase microextraction (spme) portable mass spectrometry plastic sports-field vertical distribution air pollutants |
title | Onsite Identification of Air Pollutants in Plastic Sports-Field Using Portable Gas ChromatographyMass Spectrometry via Drone-Based Solid-Phase Microextraction Sampling |
title_full | Onsite Identification of Air Pollutants in Plastic Sports-Field Using Portable Gas ChromatographyMass Spectrometry via Drone-Based Solid-Phase Microextraction Sampling |
title_fullStr | Onsite Identification of Air Pollutants in Plastic Sports-Field Using Portable Gas ChromatographyMass Spectrometry via Drone-Based Solid-Phase Microextraction Sampling |
title_full_unstemmed | Onsite Identification of Air Pollutants in Plastic Sports-Field Using Portable Gas ChromatographyMass Spectrometry via Drone-Based Solid-Phase Microextraction Sampling |
title_short | Onsite Identification of Air Pollutants in Plastic Sports-Field Using Portable Gas ChromatographyMass Spectrometry via Drone-Based Solid-Phase Microextraction Sampling |
title_sort | onsite identification of air pollutants in plastic sports field using portable gas chromatographymass spectrometry via drone based solid phase microextraction sampling |
topic | drone solid-phase microextraction (spme) portable mass spectrometry plastic sports-field vertical distribution air pollutants |
url | http://www.jcmss.com.cn/CN/article/openArticlePDF.jsp?attachType=PDF&id=3140 |
work_keys_str_mv | AT mowenzheng1 onsiteidentificationofairpollutantsinplasticsportsfieldusingportablegaschromatographymassspectrometryviadronebasedsolidphasemicroextractionsampling AT zouyingtong2 onsiteidentificationofairpollutantsinplasticsportsfieldusingportablegaschromatographymassspectrometryviadronebasedsolidphasemicroextractionsampling AT huangqiaoyun1 onsiteidentificationofairpollutantsinplasticsportsfieldusingportablegaschromatographymassspectrometryviadronebasedsolidphasemicroextractionsampling AT chenweini1 onsiteidentificationofairpollutantsinplasticsportsfieldusingportablegaschromatographymassspectrometryviadronebasedsolidphasemicroextractionsampling AT lisijie2 onsiteidentificationofairpollutantsinplasticsportsfieldusingportablegaschromatographymassspectrometryviadronebasedsolidphasemicroextractionsampling AT lijiajia2 onsiteidentificationofairpollutantsinplasticsportsfieldusingportablegaschromatographymassspectrometryviadronebasedsolidphasemicroextractionsampling AT qiaojia2 onsiteidentificationofairpollutantsinplasticsportsfieldusingportablegaschromatographymassspectrometryviadronebasedsolidphasemicroextractionsampling AT hubin1 onsiteidentificationofairpollutantsinplasticsportsfieldusingportablegaschromatographymassspectrometryviadronebasedsolidphasemicroextractionsampling |