Elastic free energy drives the shape of prevascular solid tumors.
It is well established that the mechanical environment influences cell functions in health and disease. Here, we address how the mechanical environment influences tumor growth, in particular, the shape of solid tumors. In an in vitro tumor model, which isolates mechanical interactions between cancer...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4114546?pdf=render |
_version_ | 1819080418076393472 |
---|---|
author | K L Mills Ralf Kemkemer Shiva Rudraraju Krishna Garikipati |
author_facet | K L Mills Ralf Kemkemer Shiva Rudraraju Krishna Garikipati |
author_sort | K L Mills |
collection | DOAJ |
description | It is well established that the mechanical environment influences cell functions in health and disease. Here, we address how the mechanical environment influences tumor growth, in particular, the shape of solid tumors. In an in vitro tumor model, which isolates mechanical interactions between cancer tumor cells and a hydrogel, we find that tumors grow as ellipsoids, resembling the same, oft-reported observation of in vivo tumors. Specifically, an oblate ellipsoidal tumor shape robustly occurs when the tumors grow in hydrogels that are stiffer than the tumors, but when they grow in more compliant hydrogels they remain closer to spherical in shape. Using large scale, nonlinear elasticity computations we show that the oblate ellipsoidal shape minimizes the elastic free energy of the tumor-hydrogel system. Having eliminated a number of other candidate explanations, we hypothesize that minimization of the elastic free energy is the reason for predominance of the experimentally observed ellipsoidal shape. This result may hold significance for explaining the shape progression of early solid tumors in vivo and is an important step in understanding the processes underlying solid tumor growth. |
first_indexed | 2024-12-21T19:44:34Z |
format | Article |
id | doaj.art-c5d5c9bcfb024fe3843053b5b1633161 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-21T19:44:34Z |
publishDate | 2014-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-c5d5c9bcfb024fe3843053b5b16331612022-12-21T18:52:22ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0197e10324510.1371/journal.pone.0103245Elastic free energy drives the shape of prevascular solid tumors.K L MillsRalf KemkemerShiva RudrarajuKrishna GarikipatiIt is well established that the mechanical environment influences cell functions in health and disease. Here, we address how the mechanical environment influences tumor growth, in particular, the shape of solid tumors. In an in vitro tumor model, which isolates mechanical interactions between cancer tumor cells and a hydrogel, we find that tumors grow as ellipsoids, resembling the same, oft-reported observation of in vivo tumors. Specifically, an oblate ellipsoidal tumor shape robustly occurs when the tumors grow in hydrogels that are stiffer than the tumors, but when they grow in more compliant hydrogels they remain closer to spherical in shape. Using large scale, nonlinear elasticity computations we show that the oblate ellipsoidal shape minimizes the elastic free energy of the tumor-hydrogel system. Having eliminated a number of other candidate explanations, we hypothesize that minimization of the elastic free energy is the reason for predominance of the experimentally observed ellipsoidal shape. This result may hold significance for explaining the shape progression of early solid tumors in vivo and is an important step in understanding the processes underlying solid tumor growth.http://europepmc.org/articles/PMC4114546?pdf=render |
spellingShingle | K L Mills Ralf Kemkemer Shiva Rudraraju Krishna Garikipati Elastic free energy drives the shape of prevascular solid tumors. PLoS ONE |
title | Elastic free energy drives the shape of prevascular solid tumors. |
title_full | Elastic free energy drives the shape of prevascular solid tumors. |
title_fullStr | Elastic free energy drives the shape of prevascular solid tumors. |
title_full_unstemmed | Elastic free energy drives the shape of prevascular solid tumors. |
title_short | Elastic free energy drives the shape of prevascular solid tumors. |
title_sort | elastic free energy drives the shape of prevascular solid tumors |
url | http://europepmc.org/articles/PMC4114546?pdf=render |
work_keys_str_mv | AT klmills elasticfreeenergydrivestheshapeofprevascularsolidtumors AT ralfkemkemer elasticfreeenergydrivestheshapeofprevascularsolidtumors AT shivarudraraju elasticfreeenergydrivestheshapeofprevascularsolidtumors AT krishnagarikipati elasticfreeenergydrivestheshapeofprevascularsolidtumors |