Summary: | We present a size-aware type system for first-order shapely function
definitions. Here, a function definition is called shapely when the size of the
result is determined exactly by a polynomial in the sizes of the arguments.
Examples of shapely function definitions may be implementations of matrix
multiplication and the Cartesian product of two lists. The type system is
proved to be sound w.r.t. the operational semantics of the language. The type
checking problem is shown to be undecidable in general. We define a natural
syntactic restriction such that the type checking becomes decidable, even
though size polynomials are not necessarily linear or monotonic. Furthermore,
we have shown that the type-inference problem is at least semi-decidable (under
this restriction). We have implemented a procedure that combines run-time
testing and type-checking to automatically obtain size dependencies. It
terminates on total typable function definitions.
|