An Application of the Briot-Bouquet Integral Operator for Differential Superordinations

The notion of differential superordination wasintroduced as a dual concept of diffrential subordination bythe S. S. Miller and P. T. Mocanu. Using properties of theBriot-Bouquet linear operator, we obtain differentialsubordinations and superordinatios for the function convex.2000 Mathematics Subject...

Full description

Bibliographic Details
Main Author: Anamaria G. Macovei
Format: Article
Language:English
Published: Stefan cel Mare University of Suceava 2009-01-01
Series:Journal of Applied Computer Science & Mathematics
Subjects:
Online Access:http://jacs.usv.ro/getpdf.php?issue=6&paperid=614
_version_ 1819089773546962944
author Anamaria G. Macovei
author_facet Anamaria G. Macovei
author_sort Anamaria G. Macovei
collection DOAJ
description The notion of differential superordination wasintroduced as a dual concept of diffrential subordination bythe S. S. Miller and P. T. Mocanu. Using properties of theBriot-Bouquet linear operator, we obtain differentialsubordinations and superordinatios for the function convex.2000 Mathematics Subject Classification: Primary 30C80;Secondary 30C45, 30A20, 34A40
first_indexed 2024-12-21T22:13:16Z
format Article
id doaj.art-c5dbf3dc5a1c42c1a6a91000b0627540
institution Directory Open Access Journal
issn 2066-4273
2066-3129
language English
last_indexed 2024-12-21T22:13:16Z
publishDate 2009-01-01
publisher Stefan cel Mare University of Suceava
record_format Article
series Journal of Applied Computer Science & Mathematics
spelling doaj.art-c5dbf3dc5a1c42c1a6a91000b06275402022-12-21T18:48:31ZengStefan cel Mare University of SuceavaJournal of Applied Computer Science & Mathematics2066-42732066-31292009-01-01368486An Application of the Briot-Bouquet Integral Operator for Differential SuperordinationsAnamaria G. MacoveiThe notion of differential superordination wasintroduced as a dual concept of diffrential subordination bythe S. S. Miller and P. T. Mocanu. Using properties of theBriot-Bouquet linear operator, we obtain differentialsubordinations and superordinatios for the function convex.2000 Mathematics Subject Classification: Primary 30C80;Secondary 30C45, 30A20, 34A40http://jacs.usv.ro/getpdf.php?issue=6&paperid=614Convex functionDifferential subordinationDifferential superordinationBriot-Bouquet linear operatorUnivalent
spellingShingle Anamaria G. Macovei
An Application of the Briot-Bouquet Integral Operator for Differential Superordinations
Journal of Applied Computer Science & Mathematics
Convex function
Differential subordination
Differential superordination
Briot-Bouquet linear operator
Univalent
title An Application of the Briot-Bouquet Integral Operator for Differential Superordinations
title_full An Application of the Briot-Bouquet Integral Operator for Differential Superordinations
title_fullStr An Application of the Briot-Bouquet Integral Operator for Differential Superordinations
title_full_unstemmed An Application of the Briot-Bouquet Integral Operator for Differential Superordinations
title_short An Application of the Briot-Bouquet Integral Operator for Differential Superordinations
title_sort application of the briot bouquet integral operator for differential superordinations
topic Convex function
Differential subordination
Differential superordination
Briot-Bouquet linear operator
Univalent
url http://jacs.usv.ro/getpdf.php?issue=6&paperid=614
work_keys_str_mv AT anamariagmacovei anapplicationofthebriotbouquetintegraloperatorfordifferentialsuperordinations
AT anamariagmacovei applicationofthebriotbouquetintegraloperatorfordifferentialsuperordinations