Machine learning nonequilibrium electron forces for spin dynamics of itinerant magnets

Abstract We present a generalized potential theory for conservative as well as nonconservative forces for the Landau-Lifshitz magnetization dynamics. Importantly, this formulation makes possible an elegant generalization of the Behler-Parrinello machine learning (ML) approach, which is a cornerstone...

Full description

Bibliographic Details
Main Authors: Puhan Zhang, Gia-Wei Chern
Format: Article
Language:English
Published: Nature Portfolio 2023-03-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-023-00990-0
Description
Summary:Abstract We present a generalized potential theory for conservative as well as nonconservative forces for the Landau-Lifshitz magnetization dynamics. Importantly, this formulation makes possible an elegant generalization of the Behler-Parrinello machine learning (ML) approach, which is a cornerstone of ML-based quantum molecular dynamics methods, to the modeling of force fields in adiabatic spin dynamics of out-of-equilibrium itinerant magnetic systems. We demonstrate our approach by developing a deep-learning neural network that successfully learns the electron-mediated exchange fields in a driven s-d model computed from the nonequilibrium Green’s function method. We show that dynamical simulations with forces predicted from the neural network accurately reproduce the voltage-driven domain-wall propagation. Our work also lays the foundation for ML modeling of spin transfer torques and opens a avenue for ML-based multi-scale modeling of nonequilibrium dynamical phenomena in itinerant magnets and spintronics.
ISSN:2057-3960