Summary: | Abstract: Bile salts are essential for phospholipid secretion into the bile. To study the relevance of the structure of phospholipids for their interaction with bile salts, we used spin-labeled or fluorescent phospholipid analogues of different head groups and acyl chain length. Those analogues form micelles in aqueous suspension. Their solubilization by bile salts resulting in the formation of mixed micelles was followed by the decrease of spin-spin interaction of spin-labeled analogues or by the relief of fluorescence self-quenching of (7-nitro-2-1,3-benzooxadiazol (NBD))-labeled analogues. Solubilization of analogue micelles occurred at and above the critical micellar concentration (CMC) of the bile salts. As revealed by stopped-flow technique, solubilization of NBD-analogues was very rapid with half times as low as 0.1 sec above the CMC of taurocholate. Both kinetics and extent of solubilization were independent of the phospholipid head group, but were significantly affected by the fatty acid chain length. Furthermore, using vesicles with varying phospholipid composition and different types of analogues in self-quenching concentrations, we could show that bile salt-mediated vesicle solubilization depended on the fatty acid chain length of phospholipids. In contrast, neither for phospholipids nor for analogues could an influence of the lipid head group on the solubilization process be observed. These findings support a head group-independent mechanism of bile salt-mediated enrichment of specific phospholipids in the bile fluid. —Wüstner, D., A. Herrmann, and P. Müller. Head group-independent interaction of phospholipids with bile salts: a fluorescence and EPR study. J. Lipid Res. 2000. 41: 395–404.
|