Magneto-Optical Spectroscopy of Short Spin Waves by All-Dielectric Metasurface
The optical method of spin dynamics measurements via the detection of various magneto-optical effects is widely used nowadays. Besides it being a convenient method to achieve time-resolved measurements, its spatial resolution in the lateral direction is limited by a diffraction limit for the probe l...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-11-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/12/23/4180 |
Summary: | The optical method of spin dynamics measurements via the detection of various magneto-optical effects is widely used nowadays. Besides it being a convenient method to achieve time-resolved measurements, its spatial resolution in the lateral direction is limited by a diffraction limit for the probe light. We propose a novel approach utilizing a Mie-resonance-based all-dielectric metasurface that allows for the extraction of a signal of a single submicron-wavelength spin wave from the wide spin precession spectra. This approach is based on the possibility of designing a metasurface that possesses nonuniform magneto-optical sensitivity to the different nanoscale regions of the smooth magnetic film due to the excitation of the Mie modes. The metasurface is tuned to be unsensitive to the long-wavelength spin precession, which is achieved by the optical resonance-caused zeroing of the magneto-optical effect for uniform magnetization in the vicinity of the resonance. At the same time, such a Mie-supporting metasurface exhibits selective sensitivity to a narrow range of short wavelengths equal to its period. |
---|---|
ISSN: | 2079-4991 |