Free W*-Dynamical Systems From p-Adic Number Fields and the Euler Totient Function

In this paper, we study relations between free probability on crossed product W * -algebras with a von Neumann algebra over p-adic number fields ℚp (for primes p), and free pro...

Full description

Bibliographic Details
Main Authors: Ilwoo Cho, Palle E. T. Jorgensen
Format: Article
Language:English
Published: MDPI AG 2015-12-01
Series:Mathematics
Subjects:
Online Access:http://www.mdpi.com/2227-7390/3/4/1095
_version_ 1819062696561082368
author Ilwoo Cho
Palle E. T. Jorgensen
author_facet Ilwoo Cho
Palle E. T. Jorgensen
author_sort Ilwoo Cho
collection DOAJ
description In this paper, we study relations between free probability on crossed product W * -algebras with a von Neumann algebra over p-adic number fields ℚp (for primes p), and free probability on the subalgebra Φ, generated by the Euler totient function ϕ, of the arithmetic algebra A , consisting of all arithmetic functions. In particular, we apply such free probability to consider operator-theoretic and operator-algebraic properties of W * -dynamical systems induced by ℚp under free-probabilistic (and hence, spectral-theoretic) techniques.
first_indexed 2024-12-21T15:02:53Z
format Article
id doaj.art-c5ee477cecee46239e9b746b84dfa273
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-21T15:02:53Z
publishDate 2015-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c5ee477cecee46239e9b746b84dfa2732022-12-21T18:59:33ZengMDPI AGMathematics2227-73902015-12-01341095113810.3390/math3041095math3041095Free W*-Dynamical Systems From p-Adic Number Fields and the Euler Totient FunctionIlwoo Cho0Palle E. T. Jorgensen1Department of Mathematics, St. Ambrose University, 421 Ambrose Hall, 518 W. Locust St., Davenport, IA 52803, USADepartment of Mathematics, University of Iowa, 14 McLean Hall, Iowa City, IA 52242, USAIn this paper, we study relations between free probability on crossed product W * -algebras with a von Neumann algebra over p-adic number fields ℚp (for primes p), and free probability on the subalgebra Φ, generated by the Euler totient function ϕ, of the arithmetic algebra A , consisting of all arithmetic functions. In particular, we apply such free probability to consider operator-theoretic and operator-algebraic properties of W * -dynamical systems induced by ℚp under free-probabilistic (and hence, spectral-theoretic) techniques.http://www.mdpi.com/2227-7390/3/4/1095p-Adic number fields ℚpp-Adic von neumann algebras ℳp dynamical systems induced by ℚp arithmetic functions the arithmetic algebra A the euler totient function ϕ
spellingShingle Ilwoo Cho
Palle E. T. Jorgensen
Free W*-Dynamical Systems From p-Adic Number Fields and the Euler Totient Function
Mathematics
p-Adic number fields ℚp
p-Adic von neumann algebras ℳp
 dynamical systems induced by ℚp
 arithmetic functions
 the arithmetic algebra A
 the euler totient function ϕ
title Free W*-Dynamical Systems From p-Adic Number Fields and the Euler Totient Function
title_full Free W*-Dynamical Systems From p-Adic Number Fields and the Euler Totient Function
title_fullStr Free W*-Dynamical Systems From p-Adic Number Fields and the Euler Totient Function
title_full_unstemmed Free W*-Dynamical Systems From p-Adic Number Fields and the Euler Totient Function
title_short Free W*-Dynamical Systems From p-Adic Number Fields and the Euler Totient Function
title_sort free w dynamical systems from p adic number fields and the euler totient function
topic p-Adic number fields ℚp
p-Adic von neumann algebras ℳp
 dynamical systems induced by ℚp
 arithmetic functions
 the arithmetic algebra A
 the euler totient function ϕ
url http://www.mdpi.com/2227-7390/3/4/1095
work_keys_str_mv AT ilwoocho freewdynamicalsystemsfrompadicnumberfieldsandtheeulertotientfunction
AT palleetjorgensen freewdynamicalsystemsfrompadicnumberfieldsandtheeulertotientfunction