Movement of Irrigation Water in Soil from a Surface Emitter
Trickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Baghdad
2016-09-01
|
Series: | Journal of Engineering |
Subjects: | |
Online Access: | http://joe.uobaghdad.edu.iq/index.php/main/article/view/143 |
_version_ | 1797759686481543168 |
---|---|
author | Ibrahim Abbas Dawood, MSc student Safa Noori Hamad, Prof. Dr. |
author_facet | Ibrahim Abbas Dawood, MSc student Safa Noori Hamad, Prof. Dr. |
author_sort | Ibrahim Abbas Dawood, MSc student |
collection | DOAJ |
description | Trickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy. |
first_indexed | 2024-03-12T18:47:59Z |
format | Article |
id | doaj.art-c5ef7c1e89ca48dd801fcb476eb9d1f2 |
institution | Directory Open Access Journal |
issn | 1726-4073 2520-3339 |
language | English |
last_indexed | 2024-03-12T18:47:59Z |
publishDate | 2016-09-01 |
publisher | University of Baghdad |
record_format | Article |
series | Journal of Engineering |
spelling | doaj.art-c5ef7c1e89ca48dd801fcb476eb9d1f22023-08-02T07:31:47ZengUniversity of BaghdadJournal of Engineering1726-40732520-33392016-09-01229Movement of Irrigation Water in Soil from a Surface EmitterIbrahim Abbas Dawood, MSc student0Safa Noori Hamad, Prof. Dr.1College of Engineering-University of BaghdadCollege of Engineering-University of BaghdadTrickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.http://joe.uobaghdad.edu.iq/index.php/main/article/view/143wetting patterns, trickle irrigation, wetted diameter, wetted depth. |
spellingShingle | Ibrahim Abbas Dawood, MSc student Safa Noori Hamad, Prof. Dr. Movement of Irrigation Water in Soil from a Surface Emitter Journal of Engineering wetting patterns, trickle irrigation, wetted diameter, wetted depth. |
title | Movement of Irrigation Water in Soil from a Surface Emitter |
title_full | Movement of Irrigation Water in Soil from a Surface Emitter |
title_fullStr | Movement of Irrigation Water in Soil from a Surface Emitter |
title_full_unstemmed | Movement of Irrigation Water in Soil from a Surface Emitter |
title_short | Movement of Irrigation Water in Soil from a Surface Emitter |
title_sort | movement of irrigation water in soil from a surface emitter |
topic | wetting patterns, trickle irrigation, wetted diameter, wetted depth. |
url | http://joe.uobaghdad.edu.iq/index.php/main/article/view/143 |
work_keys_str_mv | AT ibrahimabbasdawoodmscstudent movementofirrigationwaterinsoilfromasurfaceemitter AT safanoorihamadprofdr movementofirrigationwaterinsoilfromasurfaceemitter |