Condition Monitoring and Fault Diagnosis of Permanent Magnet Synchronous Motor Stator Winding Using the Continuous Wavelet Transform and Machine Learning
Applying the condition monitoring technology to industrial processes can help detect faults in time, minimise their impact and reduce the cost of unplanned downtime. Since the introduction of the Industry 4.0 paradigm, many companies have been investing in the development of such technology for driv...
Prif Awduron: | Pietrzak Przemysław, Wolkiewicz Marcin |
---|---|
Fformat: | Erthygl |
Iaith: | English |
Cyhoeddwyd: |
Sciendo
2024-01-01
|
Cyfres: | Power Electronics and Drives |
Pynciau: | |
Mynediad Ar-lein: | https://doi.org/10.2478/pead-2024-0007 |
Eitemau Tebyg
-
Machine Learning-Based Stator Current Data-Driven PMSM Stator Winding Fault Diagnosis
gan: Przemyslaw Pietrzak, et al.
Cyhoeddwyd: (2022-12-01) -
Stator Winding Fault Detection of Permanent Magnet Synchronous Motors Based on the Short-Time Fourier Transform
gan: Pietrzak Przemysław, et al.
Cyhoeddwyd: (2022-01-01) -
Stator winding fault detection of permanent magnet synchronous motors based on the bispectrum analysis
gan: Przemysław Pietrzak, et al.
Cyhoeddwyd: (2022-03-01) -
Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents
gan: Przemyslaw Pietrzak, et al.
Cyhoeddwyd: (2021-03-01) -
Review of fault diagnosis methods for permanent magnet synchronous motors
gan: MA Jian, et al.
Cyhoeddwyd: (2024-07-01)