Study of Preparation, Growth Mechanism and Catalytic Performance of Carbon Based Embedded Silver Nano Composite Materials

Novel and stable carbon based embedded silver nano composite materials (Ag/CSs) were successfully prepared by a facile one-pot hydrothermal method with trioctylamine (TOA) as soft template and stabilizer. These as-prepared Ag/CSs exhibit well-defined shape and relatively uniform size with an average...

Full description

Bibliographic Details
Main Authors: Pengpeng Jiang, Jiao Liu, Yingxin Huang, Xiaohong Jiang, Lude Lu
Format: Article
Language:English
Published: al-Farabi Kazakh National University 2017-01-01
Series:Eurasian Chemico-Technological Journal
Subjects:
Online Access:http://ect-journal.kz/index.php/ectj/article/view/126
Description
Summary:Novel and stable carbon based embedded silver nano composite materials (Ag/CSs) were successfully prepared by a facile one-pot hydrothermal method with trioctylamine (TOA) as soft template and stabilizer. These as-prepared Ag/CSs exhibit well-defined shape and relatively uniform size with an average diameter of 1.5 μm and uniformly embedded Ag nanoparticles about 5 nm. The proper proportion of glucose, AgNO3 and TOA is the key to the common growth of hydrothermal carbon materials and silver nanoparticles in an embedded way. Besides, the thickness of carbon sphere matrix and the size of Ag particles can be tailored precisely by adjusting the experimental parameters. In order to facilitate comparative analysis, carbon spheres (CSs) without Ag particles embedded were also prepared with glucose under the same hydrothermal reaction conditions. The composition, structure and morphology of the as-prepared Ag/CSs and CSs were confirmed by X-ray powder diffraction (XRD), FT-IR spectroscopy, Raman spectrum, Transmission electron microscopy (TEM) and scanning electron microscopy (SEM). In addition, the possible formation mechanism of the Ag/CSs has been proposed based on experimental evidences. Finally, the as-prepared Ag/CSs and CSs were used as catalysts in the experiments of photocatalytic degradation of methylene MB in water under visible light irradiation and the high efficiency of photocatalytic performance of Ag/CSs has been verified.
ISSN:1562-3920
2522-4867