Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter

The asymptotic behavior, as $T\to \infty $, of some functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}dW_{T}(s)$, $t\ge 0$ is studied. Here $\xi _{T}(t)$ is the solution to the time-inhomogeneous Itô stochastic differential equation \[d\xi _{T}(t)...

Full description

Bibliographic Details
Main Authors: Grigorij Kulinich, Svitlana Kushnirenko
Format: Article
Language:English
Published: VTeX 2017-09-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://vmsta.vtex.vmt/doi/10.15559/17-VMSTA83
_version_ 1818821595154612224
author Grigorij Kulinich
Svitlana Kushnirenko
author_facet Grigorij Kulinich
Svitlana Kushnirenko
author_sort Grigorij Kulinich
collection DOAJ
description The asymptotic behavior, as $T\to \infty $, of some functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}dW_{T}(s)$, $t\ge 0$ is studied. Here $\xi _{T}(t)$ is the solution to the time-inhomogeneous Itô stochastic differential equation \[d\xi _{T}(t)=a_{T}\big(t,\xi _{T}(t)\big)\hspace{0.1667em}dt+dW_{T}(t),\hspace{1em}t\ge 0,\hspace{2.5pt}\xi _{T}(0)=x_{0},\] $T>0$ is a parameter, $a_{T}(t,x),x\in \mathbb{R}$ are measurable functions, $|a_{T}(t,x)|\le C_{T}$ for all $x\in \mathbb{R}$ and $t\ge 0$, $W_{T}(t)$ are standard Wiener processes, $F_{T}(x),x\in \mathbb{R}$ are continuous functions, $g_{T}(x),x\in \mathbb{R}$ are measurable locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under nonregular dependence of $a_{T}(t,x)$ and $g_{T}(x)$ on the parameter T.
first_indexed 2024-12-18T23:10:41Z
format Article
id doaj.art-c5faa7197a83406eb2b11ccde5658583
institution Directory Open Access Journal
issn 2351-6046
2351-6054
language English
last_indexed 2024-12-18T23:10:41Z
publishDate 2017-09-01
publisher VTeX
record_format Article
series Modern Stochastics: Theory and Applications
spelling doaj.art-c5faa7197a83406eb2b11ccde56585832022-12-21T20:48:21ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542017-09-014319921710.15559/17-VMSTA83Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameterGrigorij Kulinich0Svitlana Kushnirenko1Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, UkraineTaras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, UkraineThe asymptotic behavior, as $T\to \infty $, of some functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}dW_{T}(s)$, $t\ge 0$ is studied. Here $\xi _{T}(t)$ is the solution to the time-inhomogeneous Itô stochastic differential equation \[d\xi _{T}(t)=a_{T}\big(t,\xi _{T}(t)\big)\hspace{0.1667em}dt+dW_{T}(t),\hspace{1em}t\ge 0,\hspace{2.5pt}\xi _{T}(0)=x_{0},\] $T>0$ is a parameter, $a_{T}(t,x),x\in \mathbb{R}$ are measurable functions, $|a_{T}(t,x)|\le C_{T}$ for all $x\in \mathbb{R}$ and $t\ge 0$, $W_{T}(t)$ are standard Wiener processes, $F_{T}(x),x\in \mathbb{R}$ are continuous functions, $g_{T}(x),x\in \mathbb{R}$ are measurable locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under nonregular dependence of $a_{T}(t,x)$ and $g_{T}(x)$ on the parameter T.https://vmsta.vtex.vmt/doi/10.15559/17-VMSTA83Diffusion-type processesasymptotic behavior of functionalsnonregular dependence on the parameter
spellingShingle Grigorij Kulinich
Svitlana Kushnirenko
Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
Modern Stochastics: Theory and Applications
Diffusion-type processes
asymptotic behavior of functionals
nonregular dependence on the parameter
title Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_full Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_fullStr Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_full_unstemmed Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_short Asymptotic behavior of functionals of the solutions to inhomogeneous Itô stochastic differential equations with nonregular dependence on parameter
title_sort asymptotic behavior of functionals of the solutions to inhomogeneous ito stochastic differential equations with nonregular dependence on parameter
topic Diffusion-type processes
asymptotic behavior of functionals
nonregular dependence on the parameter
url https://vmsta.vtex.vmt/doi/10.15559/17-VMSTA83
work_keys_str_mv AT grigorijkulinich asymptoticbehavioroffunctionalsofthesolutionstoinhomogeneousitostochasticdifferentialequationswithnonregulardependenceonparameter
AT svitlanakushnirenko asymptoticbehavioroffunctionalsofthesolutionstoinhomogeneousitostochasticdifferentialequationswithnonregulardependenceonparameter