Summary: | The continuous accumulation of multi-dimensional data and the development of Semantic Web and Linked Data published in the Resource Description Framework (RDF) bring new requirements for data analytics tools. Such tools should take into account the special features of RDF graphs, exploit the semantics of RDF and support flexible aggregate queries. In this paper, we present an approach for applying analytics to RDF data based on a high-level functional query language, called HIFUN. According to that language, each analytical query is considered to be a well-formed expression of a functional algebra and its definition is independent of the nature and structure of the data. In this paper, we investigate how HIFUN can be used for easing the formulation of analytic queries over RDF data. We detail the applicability of HIFUN over RDF, as well as the transformations of data that may be required, we introduce the translation rules of HIFUN queries to SPARQL and we describe a first implementation of the proposed model.
|