Validation of RELAP5 MOD3.3 code for Hybrid-SIT against SET and IET experimental data

We validated the performance of RELAP MOD3.3 code regarding the hybrid SIT with available experimental data. The concept of the hybrid SIT is to connect the pressurizer to SIT to utilize the water inside SIT in the case of SBO or SB-LOCA combined with TLOFW. We investigated how well RELAP5 code pred...

Full description

Bibliographic Details
Main Authors: Ho Joon Yoon, Waleed Al Naqbi, Omar S. Al-Yahia, Daeseong Jo
Format: Article
Language:English
Published: Elsevier 2020-09-01
Series:Nuclear Engineering and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573319308125
Description
Summary:We validated the performance of RELAP MOD3.3 code regarding the hybrid SIT with available experimental data. The concept of the hybrid SIT is to connect the pressurizer to SIT to utilize the water inside SIT in the case of SBO or SB-LOCA combined with TLOFW. We investigated how well RELAP5 code predicts the physical phenomena in terms of the equilibrium time, stratification, condensation against Separate Effect Test (SET) data. We also conducted the validation of RELAP5 code against Integrated Effect Test (IET) experimental data produced by the ATLAS facility. We followed conventional approach for code validation of IET data, which are pre-test and post-test calculation. RELAP5 code shows substantial difference with changing number of nodes. The increase of the number of nodes tends to reduce the condensation rate at the interface between liquid and vapor inside the hybrid SIT. The environmental heat loss also contributes to the large discrepancy between the simulation results of RELAP5 and the experimental data.
ISSN:1738-5733