Existence of mild solutions for fractional nonautonomous evolution equations of Sobolev type with delay

Abstract In this paper, we deal with a class of nonlinear fractional nonautonomous evolution equations with delay by using Hilfer fractional derivative, which generalizes the famous Riemann-Liouville fractional derivative. The definition of mild solutions for the studied problem was given based on a...

Full description

Bibliographic Details
Main Authors: Haide Gou, Baolin Li
Format: Article
Language:English
Published: SpringerOpen 2017-10-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-017-1526-5
Description
Summary:Abstract In this paper, we deal with a class of nonlinear fractional nonautonomous evolution equations with delay by using Hilfer fractional derivative, which generalizes the famous Riemann-Liouville fractional derivative. The definition of mild solutions for the studied problem was given based on an operator family generated by the operator pair ( A , B ) $(A,B)$ and probability density function. Combining the techniques of fractional calculus, measure of noncompactness, and fixed point theorem with respect to k-set-contractive, we obtain a new existence result of mild solutions. The results obtained improve and extend some related conclusions on this topic. At last, we present an application that illustrates the abstract results.
ISSN:1029-242X