UNBIASED ESTIMATORS OF SPECIFIC CONNECTIVITY

This paper deals with the estimation of the specific connectivity of a stationary random set in IRd. It turns out that the "natural" estimator is only asymptotically unbiased. The example of a boolean model of hypercubes illustrates the amplitude of the bias produced when the measurement f...

Full description

Bibliographic Details
Main Authors: Jean-Paul Jernot, Patricia Jouannot, Christian Lantuéjoul
Format: Article
Language:English
Published: Slovenian Society for Stereology and Quantitative Image Analysis 2011-05-01
Series:Image Analysis and Stereology
Subjects:
Online Access:http://www.ias-iss.org/ojs/IAS/article/view/816
Description
Summary:This paper deals with the estimation of the specific connectivity of a stationary random set in IRd. It turns out that the "natural" estimator is only asymptotically unbiased. The example of a boolean model of hypercubes illustrates the amplitude of the bias produced when the measurement field is relatively small with respect to the range of the random set. For that reason unbiased estimators are desired. Such an estimator can be found in the literature in the case where the measurement field is a right parallelotope. In this paper, this estimator is extended to apply to measurement fields of various shapes, and to possess a smaller variance. Finally an example from quantitative metallography (specific connectivity of a population of sintered bronze particles) is given.
ISSN:1580-3139
1854-5165