Effect of Rotational Angle of Discrete Inclined Ribs on Horizontal Flow and Heat Transfer of Supercritical R134a

This work numerically studied the heat transfer and flow characteristics of supercritical R134a in horizontal pipes equipped with DDIR, considering variations in the rotation angle of DDIR. The aim is to improve the effects of the DDIR configuration on the heat transfer of supercritical flow. After...

Full description

Bibliographic Details
Main Authors: Genxian Yang, Junrui Tang, Zhouhang Li
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/17/7/1631
Description
Summary:This work numerically studied the heat transfer and flow characteristics of supercritical R134a in horizontal pipes equipped with DDIR, considering variations in the rotation angle of DDIR. The aim is to improve the effects of the DDIR configuration on the heat transfer of supercritical flow. After validation with experimental data, the AKN model was employed to examine the effects of four sets of rotation angles (0°, 30°, 45°, and 60°) on the axial and circumferential heat transfer characteristics of DDIR horizontal tubes under the influence of strong (<i>q</i><sub>1</sub>/<i>G</i><sub>1</sub> = 0.1 kJ/kg) and medium (<i>q</i><sub>2</sub>/<i>G</i><sub>2</sub> = 0.056 kJ/kg) buoyancy. Results show that variations in the rotation angle do not induce significant alterations in the flow field, thus exerting minimal influence on the axial heat transfer characteristics. Meanwhile, the rotation angle determines the relative positioning of the circumferential inner wall temperatures and heat flux distribution, although the magnitude of this effect remains inconspicuous. The rotational angle parameter can be reasonably neglected in the future design and installation of heat exchangers.
ISSN:1996-1073