Weighted modular inequalities for monotone functions

Weight characterizations of weighted modular inequalities for operators on the cone of monotone functions are given in terms of composition operators on arbitrary non-negative functions with changes in weights. The results extend to modular inequalities, those corresponding to weighted Lebesgue sp...

Full description

Bibliographic Details
Main Authors: A. Kufner, H. P. Heinig, P. Drábek
Format: Article
Language:English
Published: SpringerOpen 1997-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://dx.doi.org/10.1155/S1025583497000131
Description
Summary:Weight characterizations of weighted modular inequalities for operators on the cone of monotone functions are given in terms of composition operators on arbitrary non-negative functions with changes in weights. The results extend to modular inequalities, those corresponding to weighted Lebesgue spaces given by E.T. Sawyer [15]. Application to Hardy and fractional integral operators on monotone functions are given.
ISSN:1025-5834
1029-242X