Log $\mathscr{D}$-modules and index theorems

We study log $\mathscr {D}$-modules on smooth log pairs and construct a comparison theorem of log de Rham complexes. The proof uses Sabbah’s generalized b-functions. As applications, we deduce a log index theorem and a Riemann-Roch type formula for perverse sheaves on smooth quasi-projective varieti...

Full description

Bibliographic Details
Main Authors: Lei Wu, Peng Zhou
Format: Article
Language:English
Published: Cambridge University Press 2021-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509420000626/type/journal_article
_version_ 1811156200158396416
author Lei Wu
Peng Zhou
author_facet Lei Wu
Peng Zhou
author_sort Lei Wu
collection DOAJ
description We study log $\mathscr {D}$-modules on smooth log pairs and construct a comparison theorem of log de Rham complexes. The proof uses Sabbah’s generalized b-functions. As applications, we deduce a log index theorem and a Riemann-Roch type formula for perverse sheaves on smooth quasi-projective varieties. The log index theorem naturally generalizes the Dubson-Kashiwara index theorem on smooth projective varieties.
first_indexed 2024-04-10T04:47:31Z
format Article
id doaj.art-c65466a9b7b441f7978da060d0b899a8
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-04-10T04:47:31Z
publishDate 2021-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-c65466a9b7b441f7978da060d0b899a82023-03-09T12:34:52ZengCambridge University PressForum of Mathematics, Sigma2050-50942021-01-01910.1017/fms.2020.62Log $\mathscr{D}$-modules and index theoremsLei Wu0Peng Zhou1Department of Mathematics, University of Utah, 155 South 1400 E, Salt Lake City, UT 84112, USA; E-mail: .Department of Mathematics, University of California, Berkeley, 970 Evans Hall, Berkeley, CA 94720-3840, USA; E-mail: .We study log $\mathscr {D}$-modules on smooth log pairs and construct a comparison theorem of log de Rham complexes. The proof uses Sabbah’s generalized b-functions. As applications, we deduce a log index theorem and a Riemann-Roch type formula for perverse sheaves on smooth quasi-projective varieties. The log index theorem naturally generalizes the Dubson-Kashiwara index theorem on smooth projective varieties.https://www.cambridge.org/core/product/identifier/S2050509420000626/type/journal_article14F1032S4032S6014C1714C40
spellingShingle Lei Wu
Peng Zhou
Log $\mathscr{D}$-modules and index theorems
Forum of Mathematics, Sigma
14F10
32S40
32S60
14C17
14C40
title Log $\mathscr{D}$-modules and index theorems
title_full Log $\mathscr{D}$-modules and index theorems
title_fullStr Log $\mathscr{D}$-modules and index theorems
title_full_unstemmed Log $\mathscr{D}$-modules and index theorems
title_short Log $\mathscr{D}$-modules and index theorems
title_sort log mathscr d modules and index theorems
topic 14F10
32S40
32S60
14C17
14C40
url https://www.cambridge.org/core/product/identifier/S2050509420000626/type/journal_article
work_keys_str_mv AT leiwu logmathscrdmodulesandindextheorems
AT pengzhou logmathscrdmodulesandindextheorems