Novelty for Different Prime Partial Bi-Ideals in Non-Commutative Partial Rings and Its Extension

In computer programming languages, partial additive semantics are used. Since partial functions under disjoint-domain sums and functional composition do not constitute a field, linear algebra cannot be applied. A partial ring can be viewed as an algebraic structure that can process natural partial o...

Full description

Bibliographic Details
Main Authors: M. Palanikumar, Omaima Al-Shanqiti, Chiranjibe Jana, Madhumangal Pal
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/6/1309
_version_ 1797610388744830976
author M. Palanikumar
Omaima Al-Shanqiti
Chiranjibe Jana
Madhumangal Pal
author_facet M. Palanikumar
Omaima Al-Shanqiti
Chiranjibe Jana
Madhumangal Pal
author_sort M. Palanikumar
collection DOAJ
description In computer programming languages, partial additive semantics are used. Since partial functions under disjoint-domain sums and functional composition do not constitute a field, linear algebra cannot be applied. A partial ring can be viewed as an algebraic structure that can process natural partial orderings, infinite partial additions, and binary multiplications. In this paper, we introduce the notions of a one-prime partial bi-ideal, a two-prime partial bi-ideal, and a three-prime partial bi-ideal, as well as their extensions to partial rings, in addition to some characteristics of various prime partial bi-ideals. In this paper, we demonstrate that two-prime partial bi-ideal is a generalization of a one-prime partial bi-ideal, and three-prime partial bi-ideal is a generalization of a two-prime partial bi-ideal and a one-prime partial bi-ideal. A discussion of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>1</mn></mrow></msub><mo>,</mo><mrow><mo>(</mo><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>2</mn></mrow></msub><mo>,</mo><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> systems is presented. In general, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>2</mn></mrow></msub></semantics></math></inline-formula> system is a generalization of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> system, while the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub></semantics></math></inline-formula> system is a generalization of both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>2</mn></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> systems. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Φ</mi></semantics></math></inline-formula> is a prime bi-ideal of ℧, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Φ</mi></semantics></math></inline-formula> is a one-prime partial bi-ideal (two-prime partial bi-ideal, three-prime partial bi-ideal) if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>℧</mo><mo>\</mo><mi mathvariant="normal">Φ</mi></mrow></semantics></math></inline-formula> is a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> system (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>2</mn></mrow></msub></semantics></math></inline-formula> system, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub></semantics></math></inline-formula> system) of ℧. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> is a prime bi-ideal in the complete partial ring ℧ and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Δ</mi></semantics></math></inline-formula> is an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub></semantics></math></inline-formula> system of ℧ with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">Θ</mi><mo>∩</mo><mi mathvariant="normal">Δ</mi><mo>=</mo><mi>ϕ</mi></mrow></semantics></math></inline-formula>, then there exists a three-prime partial bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Φ</mi></semantics></math></inline-formula> of ℧, such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">Θ</mi><mo>⊆</mo><mi mathvariant="normal">Φ</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">Φ</mi><mo>∩</mo><mi mathvariant="normal">Δ</mi><mo>=</mo><mi>ϕ</mi></mrow></semantics></math></inline-formula>. These are necessary and sufficient conditions for partial bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> to be a three-prime partial bi-ideal of ℧. It is shown that partial bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> is a three-prime partial bi-ideal of ℧ if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mi mathvariant="normal">Θ</mi></msub></semantics></math></inline-formula> is a prime partial ideal of ℧. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> is a one-prime partial bi-ideal (two-prime partial bi-ideal) in ℧, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mi mathvariant="normal">Θ</mi></msub></semantics></math></inline-formula> is a prime partial ideal of ℧. It is guaranteed that a three-prime partial bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Φ</mi></semantics></math></inline-formula> with a prime bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> does not meet the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub></semantics></math></inline-formula> system. In order to strengthen our results, examples are provided.
first_indexed 2024-03-11T06:13:42Z
format Article
id doaj.art-c65e899e2de844e0b82c137831f42ebd
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T06:13:42Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c65e899e2de844e0b82c137831f42ebd2023-11-17T12:26:48ZengMDPI AGMathematics2227-73902023-03-01116130910.3390/math11061309Novelty for Different Prime Partial Bi-Ideals in Non-Commutative Partial Rings and Its ExtensionM. Palanikumar0Omaima Al-Shanqiti1Chiranjibe Jana2Madhumangal Pal3Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, IndiaDepartment of Applied Science, Umm Al-Qura University, Mecca P.O. Box 24341, Saudi ArabiaDepartment of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, IndiaDepartment of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, IndiaIn computer programming languages, partial additive semantics are used. Since partial functions under disjoint-domain sums and functional composition do not constitute a field, linear algebra cannot be applied. A partial ring can be viewed as an algebraic structure that can process natural partial orderings, infinite partial additions, and binary multiplications. In this paper, we introduce the notions of a one-prime partial bi-ideal, a two-prime partial bi-ideal, and a three-prime partial bi-ideal, as well as their extensions to partial rings, in addition to some characteristics of various prime partial bi-ideals. In this paper, we demonstrate that two-prime partial bi-ideal is a generalization of a one-prime partial bi-ideal, and three-prime partial bi-ideal is a generalization of a two-prime partial bi-ideal and a one-prime partial bi-ideal. A discussion of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>1</mn></mrow></msub><mo>,</mo><mrow><mo>(</mo><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>2</mn></mrow></msub><mo>,</mo><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> systems is presented. In general, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>2</mn></mrow></msub></semantics></math></inline-formula> system is a generalization of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> system, while the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub></semantics></math></inline-formula> system is a generalization of both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>2</mn></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> systems. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Φ</mi></semantics></math></inline-formula> is a prime bi-ideal of ℧, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Φ</mi></semantics></math></inline-formula> is a one-prime partial bi-ideal (two-prime partial bi-ideal, three-prime partial bi-ideal) if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>℧</mo><mo>\</mo><mi mathvariant="normal">Φ</mi></mrow></semantics></math></inline-formula> is a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>1</mn></mrow></msub></semantics></math></inline-formula> system (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>2</mn></mrow></msub></semantics></math></inline-formula> system, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub></semantics></math></inline-formula> system) of ℧. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> is a prime bi-ideal in the complete partial ring ℧ and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Δ</mi></semantics></math></inline-formula> is an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub></semantics></math></inline-formula> system of ℧ with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">Θ</mi><mo>∩</mo><mi mathvariant="normal">Δ</mi><mo>=</mo><mi>ϕ</mi></mrow></semantics></math></inline-formula>, then there exists a three-prime partial bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Φ</mi></semantics></math></inline-formula> of ℧, such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">Θ</mi><mo>⊆</mo><mi mathvariant="normal">Φ</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">Φ</mi><mo>∩</mo><mi mathvariant="normal">Δ</mi><mo>=</mo><mi>ϕ</mi></mrow></semantics></math></inline-formula>. These are necessary and sufficient conditions for partial bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> to be a three-prime partial bi-ideal of ℧. It is shown that partial bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> is a three-prime partial bi-ideal of ℧ if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mi mathvariant="normal">Θ</mi></msub></semantics></math></inline-formula> is a prime partial ideal of ℧. If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> is a one-prime partial bi-ideal (two-prime partial bi-ideal) in ℧, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>H</mi><mi mathvariant="normal">Θ</mi></msub></semantics></math></inline-formula> is a prime partial ideal of ℧. It is guaranteed that a three-prime partial bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Φ</mi></semantics></math></inline-formula> with a prime bi-ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Θ</mi></semantics></math></inline-formula> does not meet the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>p</mi><mi>b</mi><mn>3</mn></mrow></msub></semantics></math></inline-formula> system. In order to strengthen our results, examples are provided.https://www.mdpi.com/2227-7390/11/6/1309partial ringprime bi-idealone-prime partial bi-idealtwo-prime partial bi-idealthree-prime partial bi-ideal<i>m</i><sub><i>pb</i>1</sub> system
spellingShingle M. Palanikumar
Omaima Al-Shanqiti
Chiranjibe Jana
Madhumangal Pal
Novelty for Different Prime Partial Bi-Ideals in Non-Commutative Partial Rings and Its Extension
Mathematics
partial ring
prime bi-ideal
one-prime partial bi-ideal
two-prime partial bi-ideal
three-prime partial bi-ideal
<i>m</i><sub><i>pb</i>1</sub> system
title Novelty for Different Prime Partial Bi-Ideals in Non-Commutative Partial Rings and Its Extension
title_full Novelty for Different Prime Partial Bi-Ideals in Non-Commutative Partial Rings and Its Extension
title_fullStr Novelty for Different Prime Partial Bi-Ideals in Non-Commutative Partial Rings and Its Extension
title_full_unstemmed Novelty for Different Prime Partial Bi-Ideals in Non-Commutative Partial Rings and Its Extension
title_short Novelty for Different Prime Partial Bi-Ideals in Non-Commutative Partial Rings and Its Extension
title_sort novelty for different prime partial bi ideals in non commutative partial rings and its extension
topic partial ring
prime bi-ideal
one-prime partial bi-ideal
two-prime partial bi-ideal
three-prime partial bi-ideal
<i>m</i><sub><i>pb</i>1</sub> system
url https://www.mdpi.com/2227-7390/11/6/1309
work_keys_str_mv AT mpalanikumar noveltyfordifferentprimepartialbiidealsinnoncommutativepartialringsanditsextension
AT omaimaalshanqiti noveltyfordifferentprimepartialbiidealsinnoncommutativepartialringsanditsextension
AT chiranjibejana noveltyfordifferentprimepartialbiidealsinnoncommutativepartialringsanditsextension
AT madhumangalpal noveltyfordifferentprimepartialbiidealsinnoncommutativepartialringsanditsextension