Rotor Position Alignment of FSTPI Based PMSM Drive Using Low Frequency Signal Injection

A PMSM drive with an incremental encoder or using sensorless control requires alignment to a predetermined rotor position (initial position) or initial rotor position detection at start-up. It is desired to lock the rotor to a known state (usually zero angle) at start-up if the initial rotor positio...

Full description

Bibliographic Details
Main Authors: Salih Baris Ozturk, Omer Cihan Kivanc, Ahmet Aksoz, Omar Hegazy
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/21/7397
Description
Summary:A PMSM drive with an incremental encoder or using sensorless control requires alignment to a predetermined rotor position (initial position) or initial rotor position detection at start-up. It is desired to lock the rotor to a known state (usually zero angle) at start-up if the initial rotor position detection is not available or difficult to obtain. In this work, a simple and proper zero angle initial rotor position alignment of four-switch three-phase (FSTP) inverter-based PMSM drive is proposed. Low-frequency voltage signal is applied to the <i>d</i>-axis voltage reference of the open-loop FSTPI based PMSM drive scheme without requiring complex trigonometric calculations, PI current regulators and current sensing. Therefore, fluctuated capacitor voltages at the DC-link are obtained allowing current flown through phase <i>a</i> locking the rotor with zero angle, properly. The proposed method has been implemented using a low-cost FSTP voltage source inverter (VSI) for PMSM drive with a floating-point TMS320F28335 DSP. The effectiveness and the feasibility of the proposed zero angle initial rotor position alignment method for PMSM driven by FSTP inverter have been demonstrated through experimental results.
ISSN:2076-3417