Effect of Ultrasonic Waves on Structural, Functional and Rheological Properties of Locust Bean Gum

Introduction  Hydrocolloid is a term refers to all polysaccharides extracted from plants, seeds, and microbial sources that regardless of their biological and nutritional role has various functional properties in food products such as concentration and gel production of aqueous solutions, stabilizat...

Full description

Bibliographic Details
Main Authors: Samira Farizad, Hajar Abbasi
Format: Article
Language:English
Published: Ferdowsi University of Mashhad 2023-06-01
Series:مجله پژوهش‌های علوم و صنایع غذایی ایران
Subjects:
Online Access:https://ifstrj.um.ac.ir/article_42312_3165a4463308093763cd149a87b32cdf.pdf
_version_ 1797643488891764736
author Samira Farizad
Hajar Abbasi
author_facet Samira Farizad
Hajar Abbasi
author_sort Samira Farizad
collection DOAJ
description Introduction  Hydrocolloid is a term refers to all polysaccharides extracted from plants, seeds, and microbial sources that regardless of their biological and nutritional role has various functional properties in food products such as concentration and gel production of aqueous solutions, stabilization of foam, emulsions and dispersed systems, prevention of ice and sugar crystals, control of the release of flavor compounds and consequently control and improve food quality. Ultrasound has been widely used in the food industry due to its numerous physical and chemical effects. The effect of ultrasound is due to cavitation, heating, dynamic mobility and shear stresses to the sample. Today, ultrasound is used as a green new technology with unique effects on food storage and processing. One of the newest applications of ultrasound is altering the structure of polymers such as polysaccharides. Changes in the structure of hydrocolloids lead to modification in their functional properties.   Materials and Methods  In this study, effect of ultrasonic waves, time (0-90 min) and processing temperature (25-75 °C) on physicochemical, rheological and functional properties of locust bean gum was investigated. In this regards, different parameters including changes in pH, solubility, minimum gelatinization concentration, viscosity and emulsifying properties (Emulsifying capacity, emulsion stability and particle dimensions) of treated locust bean gum were determined. Response surface methodology in central composite design was used to evaluate the effect of independent variables on qualitative properties of locust bean gum and model their changes. The best treatment condition was determined and the optimum treated samples were evaluated and compared in microstructure using scanning electron microscopy, rheological properties (rotational and oscillatory test) and Fourier transform infra-red.   Results and Discussion  The results showed that with increasing the time of ultrasound treatment, pH, and viscosity of the hydrocolloid decreased and its solubility and minimum gel concentration increased. However, with increasing temperature, pH, minimum gelatinization concentration and hydrocolloid viscosity increased and its solubility decreased. Optimization of treatment conditions was performed by considering the achievement of the best hydrocolloid performance characteristics. Two different temperature and time conditions were proposed for the desirable treatment of the hydrocolloid using ultrasound. In the first case, the selection criteria were to achieve the best solubility and emulsifying properties of the hydrocolloid, and in the second case, the selection criteria were solubility and emulsifying properties improvement while maintaining the gelatinization properties of the hydrocolloid. Based on the desired quality factors, optimization was performed and the results showed that in the first optimal sample (treated at 40 ° C and 48.9 minutes), solubility and emulsifying properties and in the second optimal sample (treated at 66.67 ° C and 15 Min) by maintaining the gelation properties of hydrocolloid, the solubility of the hydrocolloid increased significantly. The performance of treated samples validated developed models. SEM results showed that the ultrasound increased three-dimensional structure of gum. The smaller microscopic structure was observed in untreated sample and the larger one was in treated with ultrasonic waves for 40.9 minutes at 40 ° C. Therefore, ultrasound caused agglomeration of treated freeze dried gum. It is noteworthy that several holes observed in the structure of treated gum with ultrasonic, which can increase solubility of the gum. The flow behavior of the sonicated and control samples showed that the viscosity of all samples decreased with increasing shear rate, which indicates their pseudoplastic behavior. At low shear rates (about 0.01 per second), the viscosity of the control sample was higher than that of the sonicated samples. However, at high shear rates (about 40 per second), viscosity of the three samples were almost the same. Therefore, the control sample was more affective to shear rate compared to the treated samples. The modulus of elasticity (G ') and viscosity (G' ') of the treated specimens were lower compared to the control. Also, the frequency sweep of samples shown that in the frequency range under study, G 'and G'' were frequency dependent and with increasing frequency, the amount of these two parameters increased. This observation indicates the influence of rheological properties of the samples on the frequency changes that are commonly observed in suspensions. At low frequencies, the predominance of viscous behavior over elastic was observed in all three control and ultrasonic samples (G ''> G ') and this feature was higher in the treated samples than the control. The modulus of elasticity and viscosity of the treated sample for 49 minutes was lower than other treated samples for 15 minutes, which shows the effect of ultrasound on the rheological properties of the hydrocolloid.   Conclusion  The results of this study showed that ultrasonic waves provide a good opportunity to change the physical and functional properties of carob seed gum. It is possible to significantly improve the solubility and emulsifying activity of this hydrocolloid using ultrasound. It is necessary to determine the treatment conditions of the sample according to the intended application.
first_indexed 2024-03-11T14:15:34Z
format Article
id doaj.art-c664b969e9624aef8e5997d846b76794
institution Directory Open Access Journal
issn 1735-4161
2228-5415
language English
last_indexed 2024-03-11T14:15:34Z
publishDate 2023-06-01
publisher Ferdowsi University of Mashhad
record_format Article
series مجله پژوهش‌های علوم و صنایع غذایی ایران
spelling doaj.art-c664b969e9624aef8e5997d846b767942023-11-01T07:08:27ZengFerdowsi University of Mashhadمجله پژوهش‌های علوم و صنایع غذایی ایران1735-41612228-54152023-06-0119236538110.22067/ifstrj.2022.74595.113342312Effect of Ultrasonic Waves on Structural, Functional and Rheological Properties of Locust Bean GumSamira Farizad0Hajar Abbasi1Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, IranDepartment of Food Science and Technology, College of Agriculture and Natural Resources, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.Introduction  Hydrocolloid is a term refers to all polysaccharides extracted from plants, seeds, and microbial sources that regardless of their biological and nutritional role has various functional properties in food products such as concentration and gel production of aqueous solutions, stabilization of foam, emulsions and dispersed systems, prevention of ice and sugar crystals, control of the release of flavor compounds and consequently control and improve food quality. Ultrasound has been widely used in the food industry due to its numerous physical and chemical effects. The effect of ultrasound is due to cavitation, heating, dynamic mobility and shear stresses to the sample. Today, ultrasound is used as a green new technology with unique effects on food storage and processing. One of the newest applications of ultrasound is altering the structure of polymers such as polysaccharides. Changes in the structure of hydrocolloids lead to modification in their functional properties.   Materials and Methods  In this study, effect of ultrasonic waves, time (0-90 min) and processing temperature (25-75 °C) on physicochemical, rheological and functional properties of locust bean gum was investigated. In this regards, different parameters including changes in pH, solubility, minimum gelatinization concentration, viscosity and emulsifying properties (Emulsifying capacity, emulsion stability and particle dimensions) of treated locust bean gum were determined. Response surface methodology in central composite design was used to evaluate the effect of independent variables on qualitative properties of locust bean gum and model their changes. The best treatment condition was determined and the optimum treated samples were evaluated and compared in microstructure using scanning electron microscopy, rheological properties (rotational and oscillatory test) and Fourier transform infra-red.   Results and Discussion  The results showed that with increasing the time of ultrasound treatment, pH, and viscosity of the hydrocolloid decreased and its solubility and minimum gel concentration increased. However, with increasing temperature, pH, minimum gelatinization concentration and hydrocolloid viscosity increased and its solubility decreased. Optimization of treatment conditions was performed by considering the achievement of the best hydrocolloid performance characteristics. Two different temperature and time conditions were proposed for the desirable treatment of the hydrocolloid using ultrasound. In the first case, the selection criteria were to achieve the best solubility and emulsifying properties of the hydrocolloid, and in the second case, the selection criteria were solubility and emulsifying properties improvement while maintaining the gelatinization properties of the hydrocolloid. Based on the desired quality factors, optimization was performed and the results showed that in the first optimal sample (treated at 40 ° C and 48.9 minutes), solubility and emulsifying properties and in the second optimal sample (treated at 66.67 ° C and 15 Min) by maintaining the gelation properties of hydrocolloid, the solubility of the hydrocolloid increased significantly. The performance of treated samples validated developed models. SEM results showed that the ultrasound increased three-dimensional structure of gum. The smaller microscopic structure was observed in untreated sample and the larger one was in treated with ultrasonic waves for 40.9 minutes at 40 ° C. Therefore, ultrasound caused agglomeration of treated freeze dried gum. It is noteworthy that several holes observed in the structure of treated gum with ultrasonic, which can increase solubility of the gum. The flow behavior of the sonicated and control samples showed that the viscosity of all samples decreased with increasing shear rate, which indicates their pseudoplastic behavior. At low shear rates (about 0.01 per second), the viscosity of the control sample was higher than that of the sonicated samples. However, at high shear rates (about 40 per second), viscosity of the three samples were almost the same. Therefore, the control sample was more affective to shear rate compared to the treated samples. The modulus of elasticity (G ') and viscosity (G' ') of the treated specimens were lower compared to the control. Also, the frequency sweep of samples shown that in the frequency range under study, G 'and G'' were frequency dependent and with increasing frequency, the amount of these two parameters increased. This observation indicates the influence of rheological properties of the samples on the frequency changes that are commonly observed in suspensions. At low frequencies, the predominance of viscous behavior over elastic was observed in all three control and ultrasonic samples (G ''> G ') and this feature was higher in the treated samples than the control. The modulus of elasticity and viscosity of the treated sample for 49 minutes was lower than other treated samples for 15 minutes, which shows the effect of ultrasound on the rheological properties of the hydrocolloid.   Conclusion  The results of this study showed that ultrasonic waves provide a good opportunity to change the physical and functional properties of carob seed gum. It is possible to significantly improve the solubility and emulsifying activity of this hydrocolloid using ultrasound. It is necessary to determine the treatment conditions of the sample according to the intended application.https://ifstrj.um.ac.ir/article_42312_3165a4463308093763cd149a87b32cdf.pdflocust bean gumrheologysolubilityultrasoundviscosity
spellingShingle Samira Farizad
Hajar Abbasi
Effect of Ultrasonic Waves on Structural, Functional and Rheological Properties of Locust Bean Gum
مجله پژوهش‌های علوم و صنایع غذایی ایران
locust bean gum
rheology
solubility
ultrasound
viscosity
title Effect of Ultrasonic Waves on Structural, Functional and Rheological Properties of Locust Bean Gum
title_full Effect of Ultrasonic Waves on Structural, Functional and Rheological Properties of Locust Bean Gum
title_fullStr Effect of Ultrasonic Waves on Structural, Functional and Rheological Properties of Locust Bean Gum
title_full_unstemmed Effect of Ultrasonic Waves on Structural, Functional and Rheological Properties of Locust Bean Gum
title_short Effect of Ultrasonic Waves on Structural, Functional and Rheological Properties of Locust Bean Gum
title_sort effect of ultrasonic waves on structural functional and rheological properties of locust bean gum
topic locust bean gum
rheology
solubility
ultrasound
viscosity
url https://ifstrj.um.ac.ir/article_42312_3165a4463308093763cd149a87b32cdf.pdf
work_keys_str_mv AT samirafarizad effectofultrasonicwavesonstructuralfunctionalandrheologicalpropertiesoflocustbeangum
AT hajarabbasi effectofultrasonicwavesonstructuralfunctionalandrheologicalpropertiesoflocustbeangum