Fermi Surface Structure and Isotropic Stability of Fulde-Ferrell-Larkin-Ovchinnikov Phase in Layered Organic Superconductor <i>β</i>″-(BEDT-TTF)<sub>2</sub>SF<sub>5</sub>CH<sub>2</sub>CF<sub>2</sub>SO<sub>3</sub>
The Fermi surface structure of a layered organic superconductor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula><inline-formula><mat...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Crystals |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4352/11/12/1525 |
Summary: | The Fermi surface structure of a layered organic superconductor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>″</mo></mrow></msup></semantics></math></inline-formula>-(BEDT-TTF)<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>SF<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>5</mn></msub></semantics></math></inline-formula>CH<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>CF<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>SO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> was determined by angular-dependent magnetoresistance oscillations measurements and band-structure calculations. This salt was found to have two small pockets with the same area: a deformed square hole pocket and an elliptic electron pocket. Characteristic corrugations in the field dependence of the interlayer resistance in the superconducting phase were observed at any in-plane field directions. The features were ascribed to the commensurability (CM) effect between the Josephson vortex lattice and the periodic nodal structure of the superconducting gap in the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase. The CM effect was observed in a similar field region for various in-plane field directions, in spite of the anisotropic nature of the Fermi surface. The results clearly showed that the FFLO phase stability is insensitive to the in-plane field directions. |
---|---|
ISSN: | 2073-4352 |