The discrete Burgers equation

In this paper I give a short review on the continuous, semi-discrete and discrete Burgers equations, which are featured as integrable equations that are linearisable. The review focuses more on connections of these three kinds of equations and connections with (2+1)-dimensional systems. The continuo...

Full description

Bibliographic Details
Main Author: Da-jun Zhang
Format: Article
Language:English
Published: Elsevier 2022-06-01
Series:Partial Differential Equations in Applied Mathematics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666818122000535
Description
Summary:In this paper I give a short review on the continuous, semi-discrete and discrete Burgers equations, which are featured as integrable equations that are linearisable. The review focuses more on connections of these three kinds of equations and connections with (2+1)-dimensional systems. The continuous Burgers hierarchy is a reduction of the derivative nonlinear Schrödinger hierarchy. The later is a result of the squared eigenfunction symmetry constraint of the modified Kadomtsev–Petviashvili system. The semi-discrete Burgers hierarchy can be considered as Bäcklund transformations of the continuous Burgers hierarchy. They are also reductions of the relativistic Toda hierarchy, which is a consequence of the squared eigenfunction symmetry constraint of the semi-discrete modified Kadomtsev–Petviashvili system. The fully discrete Burgers equation is the Bianchi identity of the Bäcklund transformation for the continuous Burgers hierarchy. It is 3-point lattice equation, three-dimensionally consistent, and linearisable.
ISSN:2666-8181