Generalized Local Operators Between Function Modules

Let X be a compact Hausdorff space, E be a normed space, A(X,E)  be a regular Banach function algebra on X , and A(X,E) be a subspace of C(X,E) . In this paper, first we introduce the notion of localness of an additive map S:A(X,E) → C(X,E) with respect to  additive maps T1,...,Tn: A(X) → C(X) and t...

Full description

Bibliographic Details
Main Authors: Fereshteh Sady, Masoumeh Najafi Tavani
Format: Article
Language:fas
Published: Kharazmi University 2021-05-01
Series:پژوهش‌های ریاضی
Subjects:
Online Access:http://mmr.khu.ac.ir/article-1-2843-en.html
_version_ 1827991255300177920
author Fereshteh Sady
Masoumeh Najafi Tavani
author_facet Fereshteh Sady
Masoumeh Najafi Tavani
author_sort Fereshteh Sady
collection DOAJ
description Let X be a compact Hausdorff space, E be a normed space, A(X,E)  be a regular Banach function algebra on X , and A(X,E) be a subspace of C(X,E) . In this paper, first we introduce the notion of localness of an additive map S:A(X,E) → C(X,E) with respect to  additive maps T1,...,Tn: A(X) → C(X) and then we characterize the general form of such maps for a certain class of subspaces A(X,E) of C(X,E) having  A(X)-module structure. ./files/site1/files/71/9.pdf
first_indexed 2024-04-10T00:47:37Z
format Article
id doaj.art-c66dacdf68fe467c8d7b3ec97807a1ec
institution Directory Open Access Journal
issn 2588-2546
2588-2554
language fas
last_indexed 2024-04-10T00:47:37Z
publishDate 2021-05-01
publisher Kharazmi University
record_format Article
series پژوهش‌های ریاضی
spelling doaj.art-c66dacdf68fe467c8d7b3ec97807a1ec2023-03-13T19:22:36ZfasKharazmi Universityپژوهش‌های ریاضی2588-25462588-25542021-05-017191100Generalized Local Operators Between Function ModulesFereshteh Sady0Masoumeh Najafi Tavani1 Let X be a compact Hausdorff space, E be a normed space, A(X,E)  be a regular Banach function algebra on X , and A(X,E) be a subspace of C(X,E) . In this paper, first we introduce the notion of localness of an additive map S:A(X,E) → C(X,E) with respect to  additive maps T1,...,Tn: A(X) → C(X) and then we characterize the general form of such maps for a certain class of subspaces A(X,E) of C(X,E) having  A(X)-module structure. ./files/site1/files/71/9.pdfhttp://mmr.khu.ac.ir/article-1-2843-en.htmllocal operatorseparating maplipschitz functionsabsolutely continuous functionsvector-valued continuous functions
spellingShingle Fereshteh Sady
Masoumeh Najafi Tavani
Generalized Local Operators Between Function Modules
پژوهش‌های ریاضی
local operator
separating map
lipschitz functions
absolutely continuous functions
vector-valued continuous functions
title Generalized Local Operators Between Function Modules
title_full Generalized Local Operators Between Function Modules
title_fullStr Generalized Local Operators Between Function Modules
title_full_unstemmed Generalized Local Operators Between Function Modules
title_short Generalized Local Operators Between Function Modules
title_sort generalized local operators between function modules
topic local operator
separating map
lipschitz functions
absolutely continuous functions
vector-valued continuous functions
url http://mmr.khu.ac.ir/article-1-2843-en.html
work_keys_str_mv AT fereshtehsady generalizedlocaloperatorsbetweenfunctionmodules
AT masoumehnajafitavani generalizedlocaloperatorsbetweenfunctionmodules