Generalized Local Operators Between Function Modules
Let X be a compact Hausdorff space, E be a normed space, A(X,E) be a regular Banach function algebra on X , and A(X,E) be a subspace of C(X,E) . In this paper, first we introduce the notion of localness of an additive map S:A(X,E) → C(X,E) with respect to additive maps T1,...,Tn: A(X) → C(X) and t...
Main Authors: | , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Kharazmi University
2021-05-01
|
Series: | پژوهشهای ریاضی |
Subjects: | |
Online Access: | http://mmr.khu.ac.ir/article-1-2843-en.html |
_version_ | 1827991255300177920 |
---|---|
author | Fereshteh Sady Masoumeh Najafi Tavani |
author_facet | Fereshteh Sady Masoumeh Najafi Tavani |
author_sort | Fereshteh Sady |
collection | DOAJ |
description | Let X be a compact Hausdorff space, E be a normed space, A(X,E) be a regular Banach function algebra on X , and A(X,E) be a subspace of C(X,E) . In this paper, first we introduce the notion of localness of an additive map S:A(X,E) → C(X,E) with respect to additive maps T1,...,Tn: A(X) → C(X) and then we characterize the general form of such maps for a certain class of subspaces A(X,E) of C(X,E) having A(X)-module structure. ./files/site1/files/71/9.pdf |
first_indexed | 2024-04-10T00:47:37Z |
format | Article |
id | doaj.art-c66dacdf68fe467c8d7b3ec97807a1ec |
institution | Directory Open Access Journal |
issn | 2588-2546 2588-2554 |
language | fas |
last_indexed | 2024-04-10T00:47:37Z |
publishDate | 2021-05-01 |
publisher | Kharazmi University |
record_format | Article |
series | پژوهشهای ریاضی |
spelling | doaj.art-c66dacdf68fe467c8d7b3ec97807a1ec2023-03-13T19:22:36ZfasKharazmi Universityپژوهشهای ریاضی2588-25462588-25542021-05-017191100Generalized Local Operators Between Function ModulesFereshteh Sady0Masoumeh Najafi Tavani1 Let X be a compact Hausdorff space, E be a normed space, A(X,E) be a regular Banach function algebra on X , and A(X,E) be a subspace of C(X,E) . In this paper, first we introduce the notion of localness of an additive map S:A(X,E) → C(X,E) with respect to additive maps T1,...,Tn: A(X) → C(X) and then we characterize the general form of such maps for a certain class of subspaces A(X,E) of C(X,E) having A(X)-module structure. ./files/site1/files/71/9.pdfhttp://mmr.khu.ac.ir/article-1-2843-en.htmllocal operatorseparating maplipschitz functionsabsolutely continuous functionsvector-valued continuous functions |
spellingShingle | Fereshteh Sady Masoumeh Najafi Tavani Generalized Local Operators Between Function Modules پژوهشهای ریاضی local operator separating map lipschitz functions absolutely continuous functions vector-valued continuous functions |
title | Generalized Local Operators Between Function Modules |
title_full | Generalized Local Operators Between Function Modules |
title_fullStr | Generalized Local Operators Between Function Modules |
title_full_unstemmed | Generalized Local Operators Between Function Modules |
title_short | Generalized Local Operators Between Function Modules |
title_sort | generalized local operators between function modules |
topic | local operator separating map lipschitz functions absolutely continuous functions vector-valued continuous functions |
url | http://mmr.khu.ac.ir/article-1-2843-en.html |
work_keys_str_mv | AT fereshtehsady generalizedlocaloperatorsbetweenfunctionmodules AT masoumehnajafitavani generalizedlocaloperatorsbetweenfunctionmodules |