Joint Design of Transmitting Waveform and Receiving Filter via Novel Riemannian Idea for DFRC System

Recently, the problem of target detection in noisy environments for the Dual-Functional Radar Communication (DFRC) integration system has been a hot topic. In this paper, to suppress the noise and further enhance the target detection performance, a novel manifold Riemannian Improved Armijo Search Co...

Full description

Bibliographic Details
Main Authors: Yinan Zhao, Zhongqing Zhao, Fangqiu Tong, Ping Sun, Xiang Feng, Zhanfeng Zhao
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/14/3548
Description
Summary:Recently, the problem of target detection in noisy environments for the Dual-Functional Radar Communication (DFRC) integration system has been a hot topic. In this paper, to suppress the noise and further enhance the target detection performance, a novel manifold Riemannian Improved Armijo Search Conjugate Gradient algorithm (RIASCG) framework has been proposed which jointly optimizes the integrated transmitting waveform and receiving filter. Therein, the reference waveform is first designed to achieve excellent pattern matching of radar beamforming. Furthermore, to ensure the quality of system information transmission, the energy of multi-user interference (MUI) of communication signals is incorporated as the constraint. Additionally, the typical similarity constraint is introduced to ensure the transmitting waveform with a good ambiguity function. Finally, simulation results demonstrate that the designed waveform not only enhances the system’s target detection performance in noisy environments but also achieves a relatively good multi-user communication ability when compared with other prevalent waveforms.
ISSN:2072-4292