Confirmation Bias in the Course of Instructed Reinforcement Learning in Schizophrenia-Spectrum Disorders

A large body of research attributes learning deficits in schizophrenia (SZ) to the systems involved in value representation (prefrontal cortex, PFC) and reinforcement learning (basal ganglia, BG) as well as to the compromised connectivity of these regions. In this study, we employed learning tasks h...

Full description

Bibliographic Details
Main Authors: Dorota Frydecka, Patryk Piotrowski, Tomasz Bielawski, Edyta Pawlak, Ewa Kłosińska, Maja Krefft, Kamila Al Noaimy, Joanna Rymaszewska, Ahmed A. Moustafa, Jarosław Drapała, Błażej Misiak
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Brain Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3425/12/1/90
Description
Summary:A large body of research attributes learning deficits in schizophrenia (SZ) to the systems involved in value representation (prefrontal cortex, PFC) and reinforcement learning (basal ganglia, BG) as well as to the compromised connectivity of these regions. In this study, we employed learning tasks hypothesized to probe the function and interaction of the PFC and BG in patients with SZ-spectrum disorders in comparison to healthy control (HC) subjects. In the Instructed Probabilistic Selection task (IPST), participants received false instruction about one of the stimuli used in the course of probabilistic learning which creates confirmation bias, whereby the instructed stimulus is overvalued in comparison to its real experienced value. The IPST was administered to 102 patients with SZ and 120 HC subjects. We have shown that SZ patients and HC subjects were equally influenced by false instruction in reinforcement learning (RL) probabilistic task (IPST) (<i>p</i>-value = 0.441); however, HC subjects had significantly higher learning rates associated with the process of overcoming cognitive bias in comparison to SZ patients (<i>p</i>-value = 0.018). The behavioral results of our study could be hypothesized to provide further evidence for impairments in the SZ-BG circuitry; however, this should be verified by neurofunctional imaging studies.
ISSN:2076-3425