Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting

The rare-earth-free MnAlC alloy is currently considered a very promising candidate for permanent magnet applications due to its high anisotropy field and relatively high saturation magnetization and Curie temperature, besides being a low-cost material. In this work, we presented a simple fabrication...

Full description

Bibliographic Details
Main Authors: Hugo Martínez-Sánchez, Juan David Gámez, José Luis Valenzuela, Hernan Dario Colorado, Lorena Marín, Luis Alfredo Rodríguez, Etienne Snoeck, Christophe Gatel, Ligia Edith Zamora, Germán Antonio Pérez Alcázar, Jesús Anselmo Tabares
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/23/8347
_version_ 1797462676645871616
author Hugo Martínez-Sánchez
Juan David Gámez
José Luis Valenzuela
Hernan Dario Colorado
Lorena Marín
Luis Alfredo Rodríguez
Etienne Snoeck
Christophe Gatel
Ligia Edith Zamora
Germán Antonio Pérez Alcázar
Jesús Anselmo Tabares
author_facet Hugo Martínez-Sánchez
Juan David Gámez
José Luis Valenzuela
Hernan Dario Colorado
Lorena Marín
Luis Alfredo Rodríguez
Etienne Snoeck
Christophe Gatel
Ligia Edith Zamora
Germán Antonio Pérez Alcázar
Jesús Anselmo Tabares
author_sort Hugo Martínez-Sánchez
collection DOAJ
description The rare-earth-free MnAlC alloy is currently considered a very promising candidate for permanent magnet applications due to its high anisotropy field and relatively high saturation magnetization and Curie temperature, besides being a low-cost material. In this work, we presented a simple fabrication route that allows for obtaining a magnetically enhanced bulk <i>τ</i>-MnAlC magnet. In the fabrication process, an electric arc-melting method was carried out to melt ingots of MnAlC alloys. A two-step solution treatment at 1200 °C and 1100 °C allowed us to synthesize a pure room-temperature <i>ε</i>-MnAlC ingot that completely transformed into <i>τ</i>-MnAlC alloy, free of secondary phases, after an annealing treatment at 550 °C for 30 min. The Rietveld refinements and magnetization measurements demonstrated that the quenched process produces a phase-segregated <i>ε</i>-MnAlC alloy that is formed by two types of <i>ε</i>-phases due to local fluctuation of the Mn. Room-temperature hysteresis loops showed that our improved <i>τ</i>-MnAlC alloy exhibited a remanent magnetization of 42 Am<sup>2</sup>/kg, a coercive field of 0.2 T and a maximum energy product, (BH)<sub>max</sub>, of 6.07 kJ/m<sup>3</sup>, which is higher than those reported in previous works using a similar preparation route. Experimental evidence demonstrated that the synthesis of a pure room-temperature <i>ε</i>-MnAlC played an important role in the suppression of undesirable phases that deteriorate the permanent magnet properties of the <i>τ</i>-MnAlC. Finally, magnetic images recorded by Lorentz microscopy allowed us to observe the microstructure and magnetic domain walls of the optimized <i>τ</i>-MnAlC. The presence of magnetic contrasts in all the observed grains allowed us to confirm the high-quality ferromagnetic behavior of the system.
first_indexed 2024-03-09T17:40:01Z
format Article
id doaj.art-c6adbf67af3f4d7f952fa143829bbcfe
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-03-09T17:40:01Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-c6adbf67af3f4d7f952fa143829bbcfe2023-11-24T11:40:45ZengMDPI AGMolecules1420-30492022-11-012723834710.3390/molecules27238347Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc MeltingHugo Martínez-Sánchez0Juan David Gámez1José Luis Valenzuela2Hernan Dario Colorado3Lorena Marín4Luis Alfredo Rodríguez5Etienne Snoeck6Christophe Gatel7Ligia Edith Zamora8Germán Antonio Pérez Alcázar9Jesús Anselmo Tabares10Grupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, A.A, Cali 25360, ColombiaGrupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, A.A, Cali 25360, ColombiaGrupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, A.A, Cali 25360, ColombiaGrupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, A.A, Cali 25360, ColombiaCentro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, A.A, Cali 25360, ColombiaCentro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, A.A, Cali 25360, ColombiaCEMES-CNRS, 29 rue Jeanne Marvig, B.P. 94347, CEDEX 4, 31055 Toulouse, FranceCEMES-CNRS, 29 rue Jeanne Marvig, B.P. 94347, CEDEX 4, 31055 Toulouse, FranceGrupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, A.A, Cali 25360, ColombiaGrupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, A.A, Cali 25360, ColombiaGrupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, A.A, Cali 25360, ColombiaThe rare-earth-free MnAlC alloy is currently considered a very promising candidate for permanent magnet applications due to its high anisotropy field and relatively high saturation magnetization and Curie temperature, besides being a low-cost material. In this work, we presented a simple fabrication route that allows for obtaining a magnetically enhanced bulk <i>τ</i>-MnAlC magnet. In the fabrication process, an electric arc-melting method was carried out to melt ingots of MnAlC alloys. A two-step solution treatment at 1200 °C and 1100 °C allowed us to synthesize a pure room-temperature <i>ε</i>-MnAlC ingot that completely transformed into <i>τ</i>-MnAlC alloy, free of secondary phases, after an annealing treatment at 550 °C for 30 min. The Rietveld refinements and magnetization measurements demonstrated that the quenched process produces a phase-segregated <i>ε</i>-MnAlC alloy that is formed by two types of <i>ε</i>-phases due to local fluctuation of the Mn. Room-temperature hysteresis loops showed that our improved <i>τ</i>-MnAlC alloy exhibited a remanent magnetization of 42 Am<sup>2</sup>/kg, a coercive field of 0.2 T and a maximum energy product, (BH)<sub>max</sub>, of 6.07 kJ/m<sup>3</sup>, which is higher than those reported in previous works using a similar preparation route. Experimental evidence demonstrated that the synthesis of a pure room-temperature <i>ε</i>-MnAlC played an important role in the suppression of undesirable phases that deteriorate the permanent magnet properties of the <i>τ</i>-MnAlC. Finally, magnetic images recorded by Lorentz microscopy allowed us to observe the microstructure and magnetic domain walls of the optimized <i>τ</i>-MnAlC. The presence of magnetic contrasts in all the observed grains allowed us to confirm the high-quality ferromagnetic behavior of the system.https://www.mdpi.com/1420-3049/27/23/8347rare-earth-free permanent magnetselectric arc melting<i>τ</i>-MnAlC<i>ε</i>-MnAlC
spellingShingle Hugo Martínez-Sánchez
Juan David Gámez
José Luis Valenzuela
Hernan Dario Colorado
Lorena Marín
Luis Alfredo Rodríguez
Etienne Snoeck
Christophe Gatel
Ligia Edith Zamora
Germán Antonio Pérez Alcázar
Jesús Anselmo Tabares
Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting
Molecules
rare-earth-free permanent magnets
electric arc melting
<i>τ</i>-MnAlC
<i>ε</i>-MnAlC
title Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting
title_full Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting
title_fullStr Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting
title_full_unstemmed Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting
title_short Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting
title_sort optimized route for the fabrication of mnalc permanent magnets by arc melting
topic rare-earth-free permanent magnets
electric arc melting
<i>τ</i>-MnAlC
<i>ε</i>-MnAlC
url https://www.mdpi.com/1420-3049/27/23/8347
work_keys_str_mv AT hugomartinezsanchez optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT juandavidgamez optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT joseluisvalenzuela optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT hernandariocolorado optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT lorenamarin optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT luisalfredorodriguez optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT etiennesnoeck optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT christophegatel optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT ligiaedithzamora optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT germanantonioperezalcazar optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting
AT jesusanselmotabares optimizedrouteforthefabricationofmnalcpermanentmagnetsbyarcmelting