Effect of Additives on the Dispersion Properties of Aqueous Based C/LiFePO4 paste and its Impact on Lithium Ion Battery High Power Properties
Aqueous-based C/LiFePO4 positive electrodes with high-rate capabilities are described with an intended application in lithium ion batteries. Pastes consisting of C/LiFePO4 particles, sodium carboxymethyl cellulose (CMC), water-soluble elastome...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hosokawa Powder Technology Foundation
2014-03-01
|
Series: | KONA Powder and Particle Journal |
Subjects: | |
Online Access: | https://www.jstage.jst.go.jp/article/kona/27/0/27_2009022/_pdf/-char/en |
Summary: | Aqueous-based C/LiFePO4 positive electrodes with high-rate capabilities are described with an intended application in lithium ion batteries. Pastes consisting of C/LiFePO4 particles, sodium carboxymethyl cellulose (CMC), water-soluble elastomeric binder (WSB) and poly (acrylic acid) (PAA) were prepared in an aqueous medium and tape-cast onto an aluminum foil. It was found that the incorporation of PAA significantly decreased the apparent viscosity of the C/LiFePO4 paste as well as shifted particle size distribution to lower value, which resulted in an improvement of the C/LiFePO4 dispersion properties. A correlation was made between the dispersion properties and the electrochemical properties. The electrochemical properties indicated that the electrode with PAA exhibited a discharge specific capacity above 70 mAhg−1 at 20C, which was about seven times higher than the discharge specific capacity without PAA at 20C which showed a discharge specific capacity of only 10 mAhg−1. This was attributed to the formation of a resistance-imparting agglomeration, which is consistent with the dispersion properties of C/LiFePO4 particles. |
---|---|
ISSN: | 0288-4534 2187-5537 |