Numerical Simulation of the Percolation Threshold in Non-Overlapping Ellipsoid Composites: Toward Bottom-Up Approach for Carbon Based Electromagnetic Components Realization

A Monte Carlo (MC) model for the calculation of the percolation threshold in the composite filled with ellipsoids of revolution is developed to simulate the real experimental situation of percolative composites in which functional additives do not penetrate each other. The important advantage is tha...

Full description

Bibliographic Details
Main Authors: Artyom Plyushch, Patrizia Lamberti, Giovanni Spinelli, Jan Macutkevič, Polina Kuzhir
Format: Article
Language:English
Published: MDPI AG 2018-05-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/8/6/882
Description
Summary:A Monte Carlo (MC) model for the calculation of the percolation threshold in the composite filled with ellipsoids of revolution is developed to simulate the real experimental situation of percolative composites in which functional additives do not penetrate each other. The important advantage is that the MC model can be easily applied to multi-components composites, e.g., containing graphene nanoplatelets, carbon black and carbon nanotubes, by means of utilising the ellipsoids of different aspect ratios with the filling fraction corresponding to concentrations of each type of inclusion. The developed model could be used in a pre-experimental step for producing effective close-to percolation and percolated nanocomposites for various electromagnetic applications to avoid time and resources consuming the “sort-out” experimental phase of composition optimization, and could be utilized as the first step of the bottom-up material approach to touch the macroscopic platform for antennas/circuit realization.
ISSN:2076-3417