Improving Performance of Breast Lesion Classification Using a ResNet50 Model Optimized with a Novel Attention Mechanism
<b>Background:</b> The accurate classification between malignant and benign breast lesions detected on mammograms is a crucial but difficult challenge for reducing false-positive recall rates and improving the efficacy of breast cancer screening. <b>Objective:</b> This study...
Päätekijät: | Warid Islam, Meredith Jones, Rowzat Faiz, Negar Sadeghipour, Yuchen Qiu, Bin Zheng |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
MDPI AG
2022-09-01
|
Sarja: | Tomography |
Aiheet: | |
Linkit: | https://www.mdpi.com/2379-139X/8/5/200 |
Samankaltaisia teoksia
-
FC-ResNet: A Multilingual Handwritten Signature Verification Model Using an Improved ResNet with CBAM
Tekijä: Yusnur Muhtar, et al.
Julkaistu: (2023-07-01) -
A Hybrid Deep Learning Model for Enhanced Structural Damage Detection: Integrating ResNet50, GoogLeNet, and Attention Mechanisms
Tekijä: Vikash Singh, et al.
Julkaistu: (2024-11-01) -
Chemical Process Fault Diagnosis Based on Improved ResNet Fusing CBAM and SPP
Tekijä: Xiaochen Yan, et al.
Julkaistu: (2023-01-01) -
Diamond particle clarity detection method based on CBAM-ResNet50
Tekijä: Wenqian FEI, et al.
Julkaistu: (2024-10-01) -
Adulteration Detection of Pork in Mutton Using Smart Phone with the CBAM-Invert-ResNet and Multiple Parts Feature Fusion
Tekijä: Zongxiu Bai, et al.
Julkaistu: (2023-09-01)