Micro-Sized glucose biosensor based on composite pH sensor
Today's scientific and technical advances have led to significant advances in biosensor technology, leading to widespread use of biosensors in areas such as food technology, the environment, pharmaceuticals and clinical diagnostics, biochemistry, and analytical chemistry. Improvements in the io...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Pamukkale University
2018-12-01
|
Series: | Pamukkale University Journal of Engineering Sciences |
Subjects: | |
Online Access: | https://dergipark.org.tr/tr/pub/pajes/issue/41410/504353 |
Summary: | Today's
scientific and technical advances have led to significant advances in biosensor
technology, leading to widespread use of biosensors in areas such as food
technology, the environment, pharmaceuticals and clinical diagnostics,
biochemistry, and analytical chemistry. Improvements in the ion-selective
sensor technology used in the preparation of potentiometric biosensors and the
increase in the number of sensor materials have also accelerated the
development of new types of potentiometric biosensors. Thus, in this study,
information is given on the development of a new micro sized potentiometric
glucose biosensor based on composite pH sensor. Glucose oxidase was immobilized
on the composite layer as the biorecognition element. The surface of glucose
biosensor based composite pH sensing matrices was first examined for
electrochemical elucidation by using cyclic voltammetry and electrochemical
impedance spectroscopy. The rate of electron transfer resulted in a stable
response behavior of the biosensor and made it a suitable potentiometric sensor
for detection of glucose. A linear response in concentration range from 5x10-5
to 1x10-1 mol/L was obtained with a detection limit of 2x10-5
mol/L for the potentiometric detection of glucose. The biosensor exhibited a
fast response time (10 s), had good stability, and an extended lifetime. |
---|---|
ISSN: | 1300-7009 2147-5881 |