On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection

This paper is concerned with the nonlinear stability and instability of the two-dimensional (2D) Boussinesq-MHD equations around the equilibrium state <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <m...

Full description

Bibliographic Details
Main Author: Dongfen Bian
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/7/1049
_version_ 1797563830254960640
author Dongfen Bian
author_facet Dongfen Bian
author_sort Dongfen Bian
collection DOAJ
description This paper is concerned with the nonlinear stability and instability of the two-dimensional (2D) Boussinesq-MHD equations around the equilibrium state <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mover> <mi>u</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mover> <mi>B</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mover> <mi>θ</mi> <mo>¯</mo> </mover> <mo>=</mo> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> with the temperature-dependent fluid viscosity, thermal diffusivity and electrical conductivity in a channel. We prove that if <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mo>+</mo> </msub> <mo>≥</mo> <msub> <mi>a</mi> <mo>−</mo> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <msup> <mi>d</mi> <mn>2</mn> </msup> <mrow> <mi>d</mi> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mi>κ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>≤</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> or <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo><</mo> <mfrac> <msup> <mi>d</mi> <mn>2</mn> </msup> <mrow> <mi>d</mi> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mi>κ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>≤</mo> <msub> <mi>β</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula>, with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>β</mi> <mn>0</mn> </msub> <mo>></mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> small enough constant, and then this equilibrium state is nonlinearly asymptotically stable, and if <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mo>+</mo> </msub> <mo><</mo> <msub> <mi>a</mi> <mo>−</mo> </msub> </mrow> </semantics> </math> </inline-formula>, this equilibrium state is nonlinearly unstable. Here, <inline-formula> <math display="inline"> <semantics> <msub> <mi>a</mi> <mo>+</mo> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>a</mi> <mo>−</mo> </msub> </semantics> </math> </inline-formula> are the values of the equilibrium temperature <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> on the upper and lower boundary.
first_indexed 2024-03-10T18:47:47Z
format Article
id doaj.art-c6f891cd4b45416399d2b63360731b0f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T18:47:47Z
publishDate 2020-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c6f891cd4b45416399d2b63360731b0f2023-11-20T05:22:29ZengMDPI AGMathematics2227-73902020-06-0187104910.3390/math8071049On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics ConvectionDongfen Bian0School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, ChinaThis paper is concerned with the nonlinear stability and instability of the two-dimensional (2D) Boussinesq-MHD equations around the equilibrium state <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mover> <mi>u</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mover> <mi>B</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mover> <mi>θ</mi> <mo>¯</mo> </mover> <mo>=</mo> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> with the temperature-dependent fluid viscosity, thermal diffusivity and electrical conductivity in a channel. We prove that if <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mo>+</mo> </msub> <mo>≥</mo> <msub> <mi>a</mi> <mo>−</mo> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <msup> <mi>d</mi> <mn>2</mn> </msup> <mrow> <mi>d</mi> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mi>κ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>≤</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> or <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo><</mo> <mfrac> <msup> <mi>d</mi> <mn>2</mn> </msup> <mrow> <mi>d</mi> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mi>κ</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>≤</mo> <msub> <mi>β</mi> <mn>0</mn> </msub> </mrow> </semantics> </math> </inline-formula>, with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>β</mi> <mn>0</mn> </msub> <mo>></mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula> small enough constant, and then this equilibrium state is nonlinearly asymptotically stable, and if <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mo>+</mo> </msub> <mo><</mo> <msub> <mi>a</mi> <mo>−</mo> </msub> </mrow> </semantics> </math> </inline-formula>, this equilibrium state is nonlinearly unstable. Here, <inline-formula> <math display="inline"> <semantics> <msub> <mi>a</mi> <mo>+</mo> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>a</mi> <mo>−</mo> </msub> </semantics> </math> </inline-formula> are the values of the equilibrium temperature <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> on the upper and lower boundary.https://www.mdpi.com/2227-7390/8/7/1049Boussinesq-MHD systemasymptotic stabilitynonlinear instability
spellingShingle Dongfen Bian
On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection
Mathematics
Boussinesq-MHD system
asymptotic stability
nonlinear instability
title On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection
title_full On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection
title_fullStr On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection
title_full_unstemmed On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection
title_short On the Nonlinear Stability and Instability of the Boussinesq System for Magnetohydrodynamics Convection
title_sort on the nonlinear stability and instability of the boussinesq system for magnetohydrodynamics convection
topic Boussinesq-MHD system
asymptotic stability
nonlinear instability
url https://www.mdpi.com/2227-7390/8/7/1049
work_keys_str_mv AT dongfenbian onthenonlinearstabilityandinstabilityoftheboussinesqsystemformagnetohydrodynamicsconvection