Engineered Interleaved Random Glass Fiber Composites Using Additive Manufacturing: Effect of Mat Properties, Resin Chemistry, and Resin-Rich Layer Thickness
Standard lay-up fabrication of fiber-reinforced composites (FRCs) suffer from poor out-of-plane properties and delamination resistance. While advanced manufacturing techniques (e.g., interleaving, braiding, and z-pinning) increase delamination resistance in FRCs, they typically result in significant...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-07-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/15/15/3189 |
_version_ | 1797586121483354112 |
---|---|
author | Ahmed M. H. Ibrahim Mohanad Idrees Emine Tekerek Antonios Kontsos Giuseppe R. Palmese Nicolas J. Alvarez |
author_facet | Ahmed M. H. Ibrahim Mohanad Idrees Emine Tekerek Antonios Kontsos Giuseppe R. Palmese Nicolas J. Alvarez |
author_sort | Ahmed M. H. Ibrahim |
collection | DOAJ |
description | Standard lay-up fabrication of fiber-reinforced composites (FRCs) suffer from poor out-of-plane properties and delamination resistance. While advanced manufacturing techniques (e.g., interleaving, braiding, and z-pinning) increase delamination resistance in FRCs, they typically result in significant fabrication complexity and limitations, increased manufacturing costs, and/or overall stiffness reduction. In this work, we demonstrate the use of facile digital light processing (DLP) technique to additively manufacture (AM) random glass FRCs with engineered interleaves. This work demonstrates how vat photo-polymerization techniques can be used to build composites layer-by-layer with controlled interleaf material, thickness, and placement. Note that this engineering control is almost impossible to achieve with traditional manufacturing techniques. A range of specimens were printed to measure the effect of interleaf thickness and material on tensile/flexural properties as well as fracture toughness. One important observation was the ≈60% increase in interlaminar fracture toughness achieved by using a tough resin material in the interleaf. The comparison between AM and traditionally manufactured specimens via vacuum-assisted resin transfer molding (VARTM) highlighted the limitation of AM techniques in achieving high mat consolidation. In other words, the volume fraction of AM parts is limited by the wet fiber mat process, and engineering solutions are discussed. Overall, this technique offers engineering control of FRC design and fabrication that is not available with traditional methods. |
first_indexed | 2024-03-11T00:18:47Z |
format | Article |
id | doaj.art-c6fc57d3b8154da0b205b02422a4ec31 |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-11T00:18:47Z |
publishDate | 2023-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-c6fc57d3b8154da0b205b02422a4ec312023-11-18T23:27:47ZengMDPI AGPolymers2073-43602023-07-011515318910.3390/polym15153189Engineered Interleaved Random Glass Fiber Composites Using Additive Manufacturing: Effect of Mat Properties, Resin Chemistry, and Resin-Rich Layer ThicknessAhmed M. H. Ibrahim0Mohanad Idrees1Emine Tekerek2Antonios Kontsos3Giuseppe R. Palmese4Nicolas J. Alvarez5Department of Chemical and Biological Engineering, Drexel University College of Engineering, Philadelphia, PA 19104, USADepartment of Chemical and Biological Engineering, Drexel University College of Engineering, Philadelphia, PA 19104, USADepartment of Mechanical Engineering and Mechanics, Drexel University College of Engineering, Philadelphia, PA 19104, USADepartment of Mechanical Engineering and Mechanics, Drexel University College of Engineering, Philadelphia, PA 19104, USADepartment of Chemical and Biological Engineering, Drexel University College of Engineering, Philadelphia, PA 19104, USADepartment of Chemical and Biological Engineering, Drexel University College of Engineering, Philadelphia, PA 19104, USAStandard lay-up fabrication of fiber-reinforced composites (FRCs) suffer from poor out-of-plane properties and delamination resistance. While advanced manufacturing techniques (e.g., interleaving, braiding, and z-pinning) increase delamination resistance in FRCs, they typically result in significant fabrication complexity and limitations, increased manufacturing costs, and/or overall stiffness reduction. In this work, we demonstrate the use of facile digital light processing (DLP) technique to additively manufacture (AM) random glass FRCs with engineered interleaves. This work demonstrates how vat photo-polymerization techniques can be used to build composites layer-by-layer with controlled interleaf material, thickness, and placement. Note that this engineering control is almost impossible to achieve with traditional manufacturing techniques. A range of specimens were printed to measure the effect of interleaf thickness and material on tensile/flexural properties as well as fracture toughness. One important observation was the ≈60% increase in interlaminar fracture toughness achieved by using a tough resin material in the interleaf. The comparison between AM and traditionally manufactured specimens via vacuum-assisted resin transfer molding (VARTM) highlighted the limitation of AM techniques in achieving high mat consolidation. In other words, the volume fraction of AM parts is limited by the wet fiber mat process, and engineering solutions are discussed. Overall, this technique offers engineering control of FRC design and fabrication that is not available with traditional methods.https://www.mdpi.com/2073-4360/15/15/3189additive manufacturinginterleavingrandom chopped fibersthermosetting polymersinterlaminar properties |
spellingShingle | Ahmed M. H. Ibrahim Mohanad Idrees Emine Tekerek Antonios Kontsos Giuseppe R. Palmese Nicolas J. Alvarez Engineered Interleaved Random Glass Fiber Composites Using Additive Manufacturing: Effect of Mat Properties, Resin Chemistry, and Resin-Rich Layer Thickness Polymers additive manufacturing interleaving random chopped fibers thermosetting polymers interlaminar properties |
title | Engineered Interleaved Random Glass Fiber Composites Using Additive Manufacturing: Effect of Mat Properties, Resin Chemistry, and Resin-Rich Layer Thickness |
title_full | Engineered Interleaved Random Glass Fiber Composites Using Additive Manufacturing: Effect of Mat Properties, Resin Chemistry, and Resin-Rich Layer Thickness |
title_fullStr | Engineered Interleaved Random Glass Fiber Composites Using Additive Manufacturing: Effect of Mat Properties, Resin Chemistry, and Resin-Rich Layer Thickness |
title_full_unstemmed | Engineered Interleaved Random Glass Fiber Composites Using Additive Manufacturing: Effect of Mat Properties, Resin Chemistry, and Resin-Rich Layer Thickness |
title_short | Engineered Interleaved Random Glass Fiber Composites Using Additive Manufacturing: Effect of Mat Properties, Resin Chemistry, and Resin-Rich Layer Thickness |
title_sort | engineered interleaved random glass fiber composites using additive manufacturing effect of mat properties resin chemistry and resin rich layer thickness |
topic | additive manufacturing interleaving random chopped fibers thermosetting polymers interlaminar properties |
url | https://www.mdpi.com/2073-4360/15/15/3189 |
work_keys_str_mv | AT ahmedmhibrahim engineeredinterleavedrandomglassfibercompositesusingadditivemanufacturingeffectofmatpropertiesresinchemistryandresinrichlayerthickness AT mohanadidrees engineeredinterleavedrandomglassfibercompositesusingadditivemanufacturingeffectofmatpropertiesresinchemistryandresinrichlayerthickness AT eminetekerek engineeredinterleavedrandomglassfibercompositesusingadditivemanufacturingeffectofmatpropertiesresinchemistryandresinrichlayerthickness AT antonioskontsos engineeredinterleavedrandomglassfibercompositesusingadditivemanufacturingeffectofmatpropertiesresinchemistryandresinrichlayerthickness AT giusepperpalmese engineeredinterleavedrandomglassfibercompositesusingadditivemanufacturingeffectofmatpropertiesresinchemistryandresinrichlayerthickness AT nicolasjalvarez engineeredinterleavedrandomglassfibercompositesusingadditivemanufacturingeffectofmatpropertiesresinchemistryandresinrichlayerthickness |