Finding Meanings in Low Dimensional Structures: Stochastic Neighbor Embedding Applied to the Analysis of <i>Indri indri</i> Vocal Repertoire

Although there is a growing number of researches focusing on acoustic communication, the lack of shared analytic approaches leads to inconsistency among studies. Here, we introduced a computational method used to examine 3360 calls recorded from wild indris (<i>Indri indri</i>) from 2005...

Full description

Bibliographic Details
Main Authors: Daria Valente, Chiara De Gregorio, Valeria Torti, Longondraza Miaretsoa, Olivier Friard, Rose Marie Randrianarison, Cristina Giacoma, Marco Gamba
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/9/5/243
_version_ 1819146786043854848
author Daria Valente
Chiara De Gregorio
Valeria Torti
Longondraza Miaretsoa
Olivier Friard
Rose Marie Randrianarison
Cristina Giacoma
Marco Gamba
author_facet Daria Valente
Chiara De Gregorio
Valeria Torti
Longondraza Miaretsoa
Olivier Friard
Rose Marie Randrianarison
Cristina Giacoma
Marco Gamba
author_sort Daria Valente
collection DOAJ
description Although there is a growing number of researches focusing on acoustic communication, the lack of shared analytic approaches leads to inconsistency among studies. Here, we introduced a computational method used to examine 3360 calls recorded from wild indris (<i>Indri indri</i>) from 2005&#8211;2018. We split each sound into ten portions of equal length and, from each portion we extracted spectral coefficients, considering frequency values up to 15,000 Hz. We submitted the set of acoustic features first to a t-distributed stochastic neighbor embedding algorithm, then to a hard-clustering procedure using a k-means algorithm. The t-distributed stochastic neighbor embedding (t-SNE) mapping indicated the presence of eight different groups, consistent with the acoustic structure of the a priori identification of calls, while the cluster analysis revealed that an overlay between distinct call types might exist. Our results indicated that the t-distributed stochastic neighbor embedding (t-SNE), successfully been employed in several studies, showed a good performance also in the analysis of indris&#8217; repertoire and may open new perspectives towards the achievement of shared methodical techniques for the comparison of animal vocal repertoires.
first_indexed 2024-12-22T13:19:27Z
format Article
id doaj.art-c6fcc34c2c2c4c45b64b7100e08594c5
institution Directory Open Access Journal
issn 2076-2615
language English
last_indexed 2024-12-22T13:19:27Z
publishDate 2019-05-01
publisher MDPI AG
record_format Article
series Animals
spelling doaj.art-c6fcc34c2c2c4c45b64b7100e08594c52022-12-21T18:24:30ZengMDPI AGAnimals2076-26152019-05-019524310.3390/ani9050243ani9050243Finding Meanings in Low Dimensional Structures: Stochastic Neighbor Embedding Applied to the Analysis of <i>Indri indri</i> Vocal RepertoireDaria Valente0Chiara De Gregorio1Valeria Torti2Longondraza Miaretsoa3Olivier Friard4Rose Marie Randrianarison5Cristina Giacoma6Marco Gamba7Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10123 Torino, ItalyDipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10123 Torino, ItalyDipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10123 Torino, ItalyDipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10123 Torino, ItalyDipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10123 Torino, ItalyGroup d’Etude et de Recherche sur les Primates de Madagascar, Antananarivo 101, MadagascarDipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10123 Torino, ItalyDipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10123 Torino, ItalyAlthough there is a growing number of researches focusing on acoustic communication, the lack of shared analytic approaches leads to inconsistency among studies. Here, we introduced a computational method used to examine 3360 calls recorded from wild indris (<i>Indri indri</i>) from 2005&#8211;2018. We split each sound into ten portions of equal length and, from each portion we extracted spectral coefficients, considering frequency values up to 15,000 Hz. We submitted the set of acoustic features first to a t-distributed stochastic neighbor embedding algorithm, then to a hard-clustering procedure using a k-means algorithm. The t-distributed stochastic neighbor embedding (t-SNE) mapping indicated the presence of eight different groups, consistent with the acoustic structure of the a priori identification of calls, while the cluster analysis revealed that an overlay between distinct call types might exist. Our results indicated that the t-distributed stochastic neighbor embedding (t-SNE), successfully been employed in several studies, showed a good performance also in the analysis of indris&#8217; repertoire and may open new perspectives towards the achievement of shared methodical techniques for the comparison of animal vocal repertoires.https://www.mdpi.com/2076-2615/9/5/243lemursvocal communicationunsupervised analyses
spellingShingle Daria Valente
Chiara De Gregorio
Valeria Torti
Longondraza Miaretsoa
Olivier Friard
Rose Marie Randrianarison
Cristina Giacoma
Marco Gamba
Finding Meanings in Low Dimensional Structures: Stochastic Neighbor Embedding Applied to the Analysis of <i>Indri indri</i> Vocal Repertoire
Animals
lemurs
vocal communication
unsupervised analyses
title Finding Meanings in Low Dimensional Structures: Stochastic Neighbor Embedding Applied to the Analysis of <i>Indri indri</i> Vocal Repertoire
title_full Finding Meanings in Low Dimensional Structures: Stochastic Neighbor Embedding Applied to the Analysis of <i>Indri indri</i> Vocal Repertoire
title_fullStr Finding Meanings in Low Dimensional Structures: Stochastic Neighbor Embedding Applied to the Analysis of <i>Indri indri</i> Vocal Repertoire
title_full_unstemmed Finding Meanings in Low Dimensional Structures: Stochastic Neighbor Embedding Applied to the Analysis of <i>Indri indri</i> Vocal Repertoire
title_short Finding Meanings in Low Dimensional Structures: Stochastic Neighbor Embedding Applied to the Analysis of <i>Indri indri</i> Vocal Repertoire
title_sort finding meanings in low dimensional structures stochastic neighbor embedding applied to the analysis of i indri indri i vocal repertoire
topic lemurs
vocal communication
unsupervised analyses
url https://www.mdpi.com/2076-2615/9/5/243
work_keys_str_mv AT dariavalente findingmeaningsinlowdimensionalstructuresstochasticneighborembeddingappliedtotheanalysisofiindriindriivocalrepertoire
AT chiaradegregorio findingmeaningsinlowdimensionalstructuresstochasticneighborembeddingappliedtotheanalysisofiindriindriivocalrepertoire
AT valeriatorti findingmeaningsinlowdimensionalstructuresstochasticneighborembeddingappliedtotheanalysisofiindriindriivocalrepertoire
AT longondrazamiaretsoa findingmeaningsinlowdimensionalstructuresstochasticneighborembeddingappliedtotheanalysisofiindriindriivocalrepertoire
AT olivierfriard findingmeaningsinlowdimensionalstructuresstochasticneighborembeddingappliedtotheanalysisofiindriindriivocalrepertoire
AT rosemarierandrianarison findingmeaningsinlowdimensionalstructuresstochasticneighborembeddingappliedtotheanalysisofiindriindriivocalrepertoire
AT cristinagiacoma findingmeaningsinlowdimensionalstructuresstochasticneighborembeddingappliedtotheanalysisofiindriindriivocalrepertoire
AT marcogamba findingmeaningsinlowdimensionalstructuresstochasticneighborembeddingappliedtotheanalysisofiindriindriivocalrepertoire