The Effect of Quantum Noise on Multipartite Entanglement from a Cascaded Parametric Amplifier

The tripartite entanglement generated from a cascaded parametric amplifier is always present in the whole gain region in the ideal condition. However, in practical applications, the quantum entanglement is very fragile and easily deteriorated by quantum noise from interactions with external environm...

Full description

Bibliographic Details
Main Authors: Hailong Wang, Yajuan Zhang, Xiong Zhang, Jun Chen, Huaping Gong, Chunliu Zhao
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/10/3/307
Description
Summary:The tripartite entanglement generated from a cascaded parametric amplifier is always present in the whole gain region in the ideal condition. However, in practical applications, the quantum entanglement is very fragile and easily deteriorated by quantum noise from interactions with external environments, e.g., the avoidable attenuation and amplification operations may lead to some degradation effects on the quantum entanglement. Therefore, in this work, bipartite entanglement for the three pairs and tripartite entanglement in this cascaded parametric amplifier under the circumstances of attenuation and amplification operations are analyzed by using positivity under partial transposition criterion. The results show that tripartite entanglement is robust to the deterioration effects from the attenuation and amplification operations rather than bipartite entanglement. Our results may find some practical applications of multipartite quantum entanglement in quantum secure communications.
ISSN:2304-6732