Global Carbon Budget 2021
<p>Accurate assessment of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the glo...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-04-01
|
Series: | Earth System Science Data |
Online Access: | https://essd.copernicus.org/articles/14/1917/2022/essd-14-1917-2022.pdf |
_version_ | 1828401929830531072 |
---|---|
author | P. Friedlingstein P. Friedlingstein M. W. Jones M. O'Sullivan R. M. Andrew D. C. E. Bakker J. Hauck C. Le Quéré G. P. Peters W. Peters W. Peters J. Pongratz J. Pongratz S. Sitch J. G. Canadell P. Ciais R. B. Jackson S. R. Alin P. Anthoni N. R. Bates M. Becker M. Becker N. Bellouin L. Bopp T. T. T. Chau F. Chevallier L. P. Chini M. Cronin K. I. Currie B. Decharme L. M. Djeutchouang L. M. Djeutchouang X. Dou W. Evans R. A. Feely L. Feng T. Gasser D. Gilfillan T. Gkritzalis G. Grassi L. Gregor N. Gruber Ö. Gürses I. Harris R. A. Houghton G. C. Hurtt Y. Iida T. Ilyina I. T. Luijkx A. Jain S. D. Jones S. D. Jones E. Kato D. Kennedy K. Klein Goldewijk J. Knauer J. Knauer J. I. Korsbakken A. Körtzinger P. Landschützer S. K. Lauvset S. K. Lauvset N. Lefèvre S. Lienert J. Liu G. Marland G. Marland P. C. McGuire J. R. Melton D. R. Munro D. R. Munro J. E. M. S. Nabel J. E. M. S. Nabel S.-I. Nakaoka Y. Niwa Y. Niwa T. Ono D. Pierrot B. Poulter G. Rehder L. Resplandy E. Robertson C. Rödenbeck T. M. Rosan J. Schwinger J. Schwinger C. Schwingshackl R. Séférian A. J. Sutton C. Sweeney T. Tanhua P. P. Tans H. Tian B. Tilbrook B. Tilbrook F. Tubiello G. R. van der Werf N. Vuichard C. Wada R. Wanninkhof A. J. Watson D. Willis A. J. Wiltshire W. Yuan C. Yue X. Yue S. Zaehle J. Zeng |
author_facet | P. Friedlingstein P. Friedlingstein M. W. Jones M. O'Sullivan R. M. Andrew D. C. E. Bakker J. Hauck C. Le Quéré G. P. Peters W. Peters W. Peters J. Pongratz J. Pongratz S. Sitch J. G. Canadell P. Ciais R. B. Jackson S. R. Alin P. Anthoni N. R. Bates M. Becker M. Becker N. Bellouin L. Bopp T. T. T. Chau F. Chevallier L. P. Chini M. Cronin K. I. Currie B. Decharme L. M. Djeutchouang L. M. Djeutchouang X. Dou W. Evans R. A. Feely L. Feng T. Gasser D. Gilfillan T. Gkritzalis G. Grassi L. Gregor N. Gruber Ö. Gürses I. Harris R. A. Houghton G. C. Hurtt Y. Iida T. Ilyina I. T. Luijkx A. Jain S. D. Jones S. D. Jones E. Kato D. Kennedy K. Klein Goldewijk J. Knauer J. Knauer J. I. Korsbakken A. Körtzinger P. Landschützer S. K. Lauvset S. K. Lauvset N. Lefèvre S. Lienert J. Liu G. Marland G. Marland P. C. McGuire J. R. Melton D. R. Munro D. R. Munro J. E. M. S. Nabel J. E. M. S. Nabel S.-I. Nakaoka Y. Niwa Y. Niwa T. Ono D. Pierrot B. Poulter G. Rehder L. Resplandy E. Robertson C. Rödenbeck T. M. Rosan J. Schwinger J. Schwinger C. Schwingshackl R. Séférian A. J. Sutton C. Sweeney T. Tanhua P. P. Tans H. Tian B. Tilbrook B. Tilbrook F. Tubiello G. R. van der Werf N. Vuichard C. Wada R. Wanninkhof A. J. Watson D. Willis A. J. Wiltshire W. Yuan C. Yue X. Yue S. Zaehle J. Zeng |
author_sort | P. Friedlingstein |
collection | DOAJ |
description | <p>Accurate assessment of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emissions and
their redistribution among the atmosphere, ocean, and terrestrial biosphere
in a changing climate is critical to better understand the global carbon
cycle, support the development of climate policies, and project future
climate change. Here we describe and synthesize datasets and methodology to
quantify the five major components of the global carbon budget and their
uncertainties. Fossil CO<span class="inline-formula"><sub>2</sub></span> emissions (<span class="inline-formula"><i>E</i><sub>FOS</sub></span>) are based on energy
statistics and cement production data, while emissions from land-use change
(<span class="inline-formula"><i>E</i><sub>LUC</sub></span>), mainly deforestation, are based on land use and land-use change
data and bookkeeping models. Atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration is measured
directly, and its growth rate (<span class="inline-formula"><i>G</i><sub>ATM</sub></span>) is computed from the annual
changes in concentration. The ocean CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>OCEAN</sub></span>) is estimated
with global ocean biogeochemistry models and observation-based
data products. The terrestrial CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>LAND</sub></span>) is estimated with
dynamic global vegetation models. The resulting carbon budget imbalance
(<span class="inline-formula"><i>B</i><sub>IM</sub></span>), the difference between the estimated total emissions and the
estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a
measure of imperfect data and understanding of the contemporary carbon
cycle. All uncertainties are reported as <span class="inline-formula">±</span>1<span class="inline-formula"><i>σ</i></span>. For the first
time, an approach is shown to reconcile the difference in our <span class="inline-formula"><i>E</i><sub>LUC</sub></span>
estimate with the one from national greenhouse gas inventories, supporting
the assessment of collective countries' climate progress.</p>
<p>For the year 2020, <span class="inline-formula"><i>E</i><sub>FOS</sub></span> declined by 5.4 % relative to 2019, with
fossil emissions at 9.5 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> (9.3 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> when the cement carbonation sink is included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 0.9 <span class="inline-formula">±</span> 0.7 GtC yr<span class="inline-formula"><sup>−1</sup></span>, for a total anthropogenic CO<span class="inline-formula"><sub>2</sub></span> emission of
10.2 <span class="inline-formula">±</span> 0.8 GtC yr<span class="inline-formula"><sup>−1</sup></span> (37.4 <span class="inline-formula">±</span> 2.9 GtCO<span class="inline-formula"><sub>2</sub></span>). Also, for
2020, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was 5.0 <span class="inline-formula">±</span> 0.2 GtC yr<span class="inline-formula"><sup>−1</sup></span> (2.4 <span class="inline-formula">±</span> 0.1 ppm yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> was 3.0 <span class="inline-formula">±</span> 0.4 GtC yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span>
was 2.9 <span class="inline-formula">±</span> 1 GtC yr<span class="inline-formula"><sup>−1</sup></span>, with a <span class="inline-formula"><i>B</i><sub>IM</sub></span> of <span class="inline-formula">−</span>0.8 GtC yr<span class="inline-formula"><sup>−1</sup></span>. The
global atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration averaged over 2020 reached 412.45 <span class="inline-formula">±</span> 0.1 ppm. Preliminary data for 2021 suggest a rebound in <span class="inline-formula"><i>E</i><sub>FOS</sub></span>
relative to 2020 of <span class="inline-formula">+</span>4.8 % (4.2 % to 5.4 %) globally.</p>
<p>Overall, the mean and trend in the components of the global carbon budget
are consistently estimated over the period 1959–2020, but discrepancies of
up to 1 GtC yr<span class="inline-formula"><sup>−1</sup></span> persist for the representation of annual to
semi-decadal variability in CO<span class="inline-formula"><sub>2</sub></span> fluxes. Comparison of estimates from
multiple approaches and observations shows (1) a persistent large
uncertainty in the estimate of land-use changes emissions, (2) a low
agreement between the different methods on the magnitude of the land
CO<span class="inline-formula"><sub>2</sub></span> flux in the northern extra-tropics, and (3) a discrepancy between
the different methods on the strength of the ocean sink over the last
decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding
of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le
Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The
data presented in this work are available at <a href="https://doi.org/10.18160/gcp-2021">https://doi.org/10.18160/gcp-2021</a> (Friedlingstein et al., 2021).</p> |
first_indexed | 2024-12-10T09:53:24Z |
format | Article |
id | doaj.art-c709ef6e046f42c5b3697a99222ac117 |
institution | Directory Open Access Journal |
issn | 1866-3508 1866-3516 |
language | English |
last_indexed | 2024-12-10T09:53:24Z |
publishDate | 2022-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Earth System Science Data |
spelling | doaj.art-c709ef6e046f42c5b3697a99222ac1172022-12-22T01:53:36ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162022-04-01141917200510.5194/essd-14-1917-2022Global Carbon Budget 2021P. Friedlingstein0P. Friedlingstein1M. W. Jones2M. O'Sullivan3R. M. Andrew4D. C. E. Bakker5J. Hauck6C. Le Quéré7G. P. Peters8W. Peters9W. Peters10J. Pongratz11J. Pongratz12S. Sitch13J. G. Canadell14P. Ciais15R. B. Jackson16S. R. Alin17P. Anthoni18N. R. Bates19M. Becker20M. Becker21N. Bellouin22L. Bopp23T. T. T. Chau24F. Chevallier25L. P. Chini26M. Cronin27K. I. Currie28B. Decharme29L. M. Djeutchouang30L. M. Djeutchouang31X. Dou32W. Evans33R. A. Feely34L. Feng35T. Gasser36D. Gilfillan37T. Gkritzalis38G. Grassi39L. Gregor40N. Gruber41Ö. Gürses42I. Harris43R. A. Houghton44G. C. Hurtt45Y. Iida46T. Ilyina47I. T. Luijkx48A. Jain49S. D. Jones50S. D. Jones51E. Kato52D. Kennedy53K. Klein Goldewijk54J. Knauer55J. Knauer56J. I. Korsbakken57A. Körtzinger58P. Landschützer59S. K. Lauvset60S. K. Lauvset61N. Lefèvre62S. Lienert63J. Liu64G. Marland65G. Marland66P. C. McGuire67J. R. Melton68D. R. Munro69D. R. Munro70J. E. M. S. Nabel71J. E. M. S. Nabel72S.-I. Nakaoka73Y. Niwa74Y. Niwa75T. Ono76D. Pierrot77B. Poulter78G. Rehder79L. Resplandy80E. Robertson81C. Rödenbeck82T. M. Rosan83J. Schwinger84J. Schwinger85C. Schwingshackl86R. Séférian87A. J. Sutton88C. Sweeney89T. Tanhua90P. P. Tans91H. Tian92B. Tilbrook93B. Tilbrook94F. Tubiello95G. R. van der Werf96N. Vuichard97C. Wada98R. Wanninkhof99A. J. Watson100D. Willis101A. J. Wiltshire102W. Yuan103C. Yue104X. Yue105S. Zaehle106J. Zeng107College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UKLaboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Paris, FranceTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKCollege of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UKCICERO Center for International Climate Research, Oslo 0349, NorwaySchool of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKCICERO Center for International Climate Research, Oslo 0349, NorwayWageningen University, Environmental Sciences Group, P.O. Box 47, 6700AA, Wageningen, the NetherlandsUniversity of Groningen, Centre for Isotope Research, Groningen, the NetherlandsLudwig-Maximilians-Universität München, Luisenstr. 37, 80333 München, GermanyMax Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, GermanyCollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UKCSIRO Oceans and Atmosphere, Canberra, ACT 2101, AustraliaLaboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceDepartment of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA 94305–2210, USANational Oceanic & Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USAKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, 82467 Garmisch-Partenkirchen, GermanyBermuda Institute of Ocean Sciences (BIOS), 17 Biological Lane, Ferry Reach, St. Georges, GEO1, BermudaGeophysical Institute, University of Bergen, Bergen, NorwayBjerknes Centre for Climate Research, Bergen, NorwayDepartment of Meteorology, University of Reading, Reading, UKLaboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Paris, FranceLaboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceLaboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceDepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USAMarine Institute, Galway, Ireland NIWA, Union Place West, Dunedin, New ZealandCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceDepartment of Oceanography, University of Cape Town, Cape Town, 7701, South AfricaSOCCO, Council for Scientific and Industrial Research, Cape Town, 7700, South AfricaDepartment of Earth System Science, Tsinghua University, Beijing, ChinaHakai Institute, Heriot Bay, BC, CanadaNational Oceanic & Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USANational Centre for Earth Observation, University of Edinburgh, Edinburgh, UK International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 2361 Laxenburg, AustriaNorth Carolina School for Science and Mathematics, Durham, NC, USAFlanders Marine Institute (VLIZ), InnovOceanSite, Wandelaarkaai 7, 8400 Ostend, BelgiumEuropean Commission, Joint Research Centre, 21027 Ispra (VA), ItalyEnvironmental Physics Group, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics and Center for Climate Systems Modeling (C2SM), 8092 Zurich, SwitzerlandEnvironmental Physics Group, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics and Center for Climate Systems Modeling (C2SM), 8092 Zurich, SwitzerlandAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany NCAS-Climate, Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UKWoodwell Climate Research Center, Falmouth, MA 02540, USADepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USAAtmosphere and Ocean Department, Japan Meteorological Agency, Minato-Ku, Tokyo 105-8431, JapanMax Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, GermanyWageningen University, Environmental Sciences Group, P.O. Box 47, 6700AA, Wageningen, the NetherlandsDepartment of Atmospheric Sciences, University of Illinois, Urbana, IL 61821, USAGeophysical Institute, University of Bergen, Bergen, NorwayBjerknes Centre for Climate Research, Bergen, NorwayInstitute of Applied Energy (IAE), Minato-ku, Tokyo 105-0003, JapanNational Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section, Boulder, CO 80305, USAUtrecht University, Faculty of Geosciences, Department IMEW, Copernicus Institute of Sustainable Development, Heidelberglaan 2, P.O. Box 80115, 3508 TC, Utrecht, the NetherlandsCSIRO Oceans and Atmosphere, Canberra, ACT 2101, AustraliaHawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, AustraliaCICERO Center for International Climate Research, Oslo 0349, NorwayGEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, GermanyMax Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, GermanyBjerknes Centre for Climate Research, Bergen, NorwayNORCE Norwegian Research Centre, Jahnebakken 5, 5007 Bergen, NorwayLOCEAN/IPSL laboratory, Sorbonne Université, CNRS/IRD/MNHN, Paris, FranceClimate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, SwitzerlandJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USAResearch Institute for Environment, Energy, and Economics, Appalachian State University, Boone, NC, USADepartment of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USADepartment of Meteorology, Department of Geography & Environmental Science, National Centre for Atmospheric Science, University of Reading, Reading, UKClimate Research Division, Environment and Climate Change Canada, Victoria, BC, CanadaCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80305, USANational Oceanic & Atmospheric Administration/Global Monitoring Laboratory (NOAA/GML), Boulder, CO 80305, USAMax Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyEarth System Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanEarth System Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanMeteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, JapanJapan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-Ku, Yokohama 236-8648, JapanNational Oceanic & Atmospheric Administration/Atlantic Oceanographic & Meteorological Laboratory (NOAA/AOML), Miami, FL 33149, USANASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, USALeibniz Institute for Baltic Sea Research Warnemuende (IOW), Seestrasse 15, 18119 Rostock, GermanyPrinceton University, Department of Geosciences and Princeton Environmental Institute, Princeton, NJ, USAMet Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKMax Planck Institute for Biogeochemistry, Jena, GermanyCollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UKBjerknes Centre for Climate Research, Bergen, NorwayNORCE Norwegian Research Centre, Jahnebakken 5, 5007 Bergen, NorwayLudwig-Maximilians-Universität München, Luisenstr. 37, 80333 München, GermanyCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceNational Oceanic & Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USANational Oceanic & Atmospheric Administration/Global Monitoring Laboratory (NOAA/GML), Boulder, CO 80305, USAGEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, GermanyNational Oceanic and Atmospheric Administration, Earth System Research Laboratory (NOAA ESRL), Boulder, CO 80305, USASchool of Forestry and Wildlife Sciences, Auburn University, 602 Ducan Drive, Auburn, AL 36849, USACSIRO Oceans and Atmosphere, P.O. Box 1538, Hobart, Tasmania 7001, AustraliaAustralian Antarctic Partnership Program, University of Tasmania, Hobart, AustraliaStatistics Division, Food and Agriculture Organization of the United Nations, Via Terme di Caracalla, Rome 00153, ItalyFaculty of Earth and Life Sciences, VU University, Amsterdam, the NetherlandsLaboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceEarth System Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanNational Oceanic & Atmospheric Administration/Atlantic Oceanographic & Meteorological Laboratory (NOAA/AOML), Miami, FL 33149, USACollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UKTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKMet Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKSchool of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 510245, ChinaLaboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceSchool of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), Nanjing, ChinaMax Planck Institute for Biogeochemistry, Jena, GermanyEarth System Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan<p>Accurate assessment of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO<span class="inline-formula"><sub>2</sub></span> emissions (<span class="inline-formula"><i>E</i><sub>FOS</sub></span>) are based on energy statistics and cement production data, while emissions from land-use change (<span class="inline-formula"><i>E</i><sub>LUC</sub></span>), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration is measured directly, and its growth rate (<span class="inline-formula"><i>G</i><sub>ATM</sub></span>) is computed from the annual changes in concentration. The ocean CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>OCEAN</sub></span>) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>LAND</sub></span>) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (<span class="inline-formula"><i>B</i><sub>IM</sub></span>), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as <span class="inline-formula">±</span>1<span class="inline-formula"><i>σ</i></span>. For the first time, an approach is shown to reconcile the difference in our <span class="inline-formula"><i>E</i><sub>LUC</sub></span> estimate with the one from national greenhouse gas inventories, supporting the assessment of collective countries' climate progress.</p> <p>For the year 2020, <span class="inline-formula"><i>E</i><sub>FOS</sub></span> declined by 5.4 % relative to 2019, with fossil emissions at 9.5 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> (9.3 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> when the cement carbonation sink is included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 0.9 <span class="inline-formula">±</span> 0.7 GtC yr<span class="inline-formula"><sup>−1</sup></span>, for a total anthropogenic CO<span class="inline-formula"><sub>2</sub></span> emission of 10.2 <span class="inline-formula">±</span> 0.8 GtC yr<span class="inline-formula"><sup>−1</sup></span> (37.4 <span class="inline-formula">±</span> 2.9 GtCO<span class="inline-formula"><sub>2</sub></span>). Also, for 2020, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was 5.0 <span class="inline-formula">±</span> 0.2 GtC yr<span class="inline-formula"><sup>−1</sup></span> (2.4 <span class="inline-formula">±</span> 0.1 ppm yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> was 3.0 <span class="inline-formula">±</span> 0.4 GtC yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> was 2.9 <span class="inline-formula">±</span> 1 GtC yr<span class="inline-formula"><sup>−1</sup></span>, with a <span class="inline-formula"><i>B</i><sub>IM</sub></span> of <span class="inline-formula">−</span>0.8 GtC yr<span class="inline-formula"><sup>−1</sup></span>. The global atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration averaged over 2020 reached 412.45 <span class="inline-formula">±</span> 0.1 ppm. Preliminary data for 2021 suggest a rebound in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> relative to 2020 of <span class="inline-formula">+</span>4.8 % (4.2 % to 5.4 %) globally.</p> <p>Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2020, but discrepancies of up to 1 GtC yr<span class="inline-formula"><sup>−1</sup></span> persist for the representation of annual to semi-decadal variability in CO<span class="inline-formula"><sub>2</sub></span> fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO<span class="inline-formula"><sub>2</sub></span> flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at <a href="https://doi.org/10.18160/gcp-2021">https://doi.org/10.18160/gcp-2021</a> (Friedlingstein et al., 2021).</p>https://essd.copernicus.org/articles/14/1917/2022/essd-14-1917-2022.pdf |
spellingShingle | P. Friedlingstein P. Friedlingstein M. W. Jones M. O'Sullivan R. M. Andrew D. C. E. Bakker J. Hauck C. Le Quéré G. P. Peters W. Peters W. Peters J. Pongratz J. Pongratz S. Sitch J. G. Canadell P. Ciais R. B. Jackson S. R. Alin P. Anthoni N. R. Bates M. Becker M. Becker N. Bellouin L. Bopp T. T. T. Chau F. Chevallier L. P. Chini M. Cronin K. I. Currie B. Decharme L. M. Djeutchouang L. M. Djeutchouang X. Dou W. Evans R. A. Feely L. Feng T. Gasser D. Gilfillan T. Gkritzalis G. Grassi L. Gregor N. Gruber Ö. Gürses I. Harris R. A. Houghton G. C. Hurtt Y. Iida T. Ilyina I. T. Luijkx A. Jain S. D. Jones S. D. Jones E. Kato D. Kennedy K. Klein Goldewijk J. Knauer J. Knauer J. I. Korsbakken A. Körtzinger P. Landschützer S. K. Lauvset S. K. Lauvset N. Lefèvre S. Lienert J. Liu G. Marland G. Marland P. C. McGuire J. R. Melton D. R. Munro D. R. Munro J. E. M. S. Nabel J. E. M. S. Nabel S.-I. Nakaoka Y. Niwa Y. Niwa T. Ono D. Pierrot B. Poulter G. Rehder L. Resplandy E. Robertson C. Rödenbeck T. M. Rosan J. Schwinger J. Schwinger C. Schwingshackl R. Séférian A. J. Sutton C. Sweeney T. Tanhua P. P. Tans H. Tian B. Tilbrook B. Tilbrook F. Tubiello G. R. van der Werf N. Vuichard C. Wada R. Wanninkhof A. J. Watson D. Willis A. J. Wiltshire W. Yuan C. Yue X. Yue S. Zaehle J. Zeng Global Carbon Budget 2021 Earth System Science Data |
title | Global Carbon Budget 2021 |
title_full | Global Carbon Budget 2021 |
title_fullStr | Global Carbon Budget 2021 |
title_full_unstemmed | Global Carbon Budget 2021 |
title_short | Global Carbon Budget 2021 |
title_sort | global carbon budget 2021 |
url | https://essd.copernicus.org/articles/14/1917/2022/essd-14-1917-2022.pdf |
work_keys_str_mv | AT pfriedlingstein globalcarbonbudget2021 AT pfriedlingstein globalcarbonbudget2021 AT mwjones globalcarbonbudget2021 AT mosullivan globalcarbonbudget2021 AT rmandrew globalcarbonbudget2021 AT dcebakker globalcarbonbudget2021 AT jhauck globalcarbonbudget2021 AT clequere globalcarbonbudget2021 AT gppeters globalcarbonbudget2021 AT wpeters globalcarbonbudget2021 AT wpeters globalcarbonbudget2021 AT jpongratz globalcarbonbudget2021 AT jpongratz globalcarbonbudget2021 AT ssitch globalcarbonbudget2021 AT jgcanadell globalcarbonbudget2021 AT pciais globalcarbonbudget2021 AT rbjackson globalcarbonbudget2021 AT sralin globalcarbonbudget2021 AT panthoni globalcarbonbudget2021 AT nrbates globalcarbonbudget2021 AT mbecker globalcarbonbudget2021 AT mbecker globalcarbonbudget2021 AT nbellouin globalcarbonbudget2021 AT lbopp globalcarbonbudget2021 AT tttchau globalcarbonbudget2021 AT fchevallier globalcarbonbudget2021 AT lpchini globalcarbonbudget2021 AT mcronin globalcarbonbudget2021 AT kicurrie globalcarbonbudget2021 AT bdecharme globalcarbonbudget2021 AT lmdjeutchouang globalcarbonbudget2021 AT lmdjeutchouang globalcarbonbudget2021 AT xdou globalcarbonbudget2021 AT wevans globalcarbonbudget2021 AT rafeely globalcarbonbudget2021 AT lfeng globalcarbonbudget2021 AT tgasser globalcarbonbudget2021 AT dgilfillan globalcarbonbudget2021 AT tgkritzalis globalcarbonbudget2021 AT ggrassi globalcarbonbudget2021 AT lgregor globalcarbonbudget2021 AT ngruber globalcarbonbudget2021 AT ogurses globalcarbonbudget2021 AT iharris globalcarbonbudget2021 AT rahoughton globalcarbonbudget2021 AT gchurtt globalcarbonbudget2021 AT yiida globalcarbonbudget2021 AT tilyina globalcarbonbudget2021 AT itluijkx globalcarbonbudget2021 AT ajain globalcarbonbudget2021 AT sdjones globalcarbonbudget2021 AT sdjones globalcarbonbudget2021 AT ekato globalcarbonbudget2021 AT dkennedy globalcarbonbudget2021 AT kkleingoldewijk globalcarbonbudget2021 AT jknauer globalcarbonbudget2021 AT jknauer globalcarbonbudget2021 AT jikorsbakken globalcarbonbudget2021 AT akortzinger globalcarbonbudget2021 AT plandschutzer globalcarbonbudget2021 AT sklauvset globalcarbonbudget2021 AT sklauvset globalcarbonbudget2021 AT nlefevre globalcarbonbudget2021 AT slienert globalcarbonbudget2021 AT jliu globalcarbonbudget2021 AT gmarland globalcarbonbudget2021 AT gmarland globalcarbonbudget2021 AT pcmcguire globalcarbonbudget2021 AT jrmelton globalcarbonbudget2021 AT drmunro globalcarbonbudget2021 AT drmunro globalcarbonbudget2021 AT jemsnabel globalcarbonbudget2021 AT jemsnabel globalcarbonbudget2021 AT sinakaoka globalcarbonbudget2021 AT yniwa globalcarbonbudget2021 AT yniwa globalcarbonbudget2021 AT tono globalcarbonbudget2021 AT dpierrot globalcarbonbudget2021 AT bpoulter globalcarbonbudget2021 AT grehder globalcarbonbudget2021 AT lresplandy globalcarbonbudget2021 AT erobertson globalcarbonbudget2021 AT crodenbeck globalcarbonbudget2021 AT tmrosan globalcarbonbudget2021 AT jschwinger globalcarbonbudget2021 AT jschwinger globalcarbonbudget2021 AT cschwingshackl globalcarbonbudget2021 AT rseferian globalcarbonbudget2021 AT ajsutton globalcarbonbudget2021 AT csweeney globalcarbonbudget2021 AT ttanhua globalcarbonbudget2021 AT pptans globalcarbonbudget2021 AT htian globalcarbonbudget2021 AT btilbrook globalcarbonbudget2021 AT btilbrook globalcarbonbudget2021 AT ftubiello globalcarbonbudget2021 AT grvanderwerf globalcarbonbudget2021 AT nvuichard globalcarbonbudget2021 AT cwada globalcarbonbudget2021 AT rwanninkhof globalcarbonbudget2021 AT ajwatson globalcarbonbudget2021 AT dwillis globalcarbonbudget2021 AT ajwiltshire globalcarbonbudget2021 AT wyuan globalcarbonbudget2021 AT cyue globalcarbonbudget2021 AT xyue globalcarbonbudget2021 AT szaehle globalcarbonbudget2021 AT jzeng globalcarbonbudget2021 |