Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats
Abstract Host ecological factors and external environmental factors are known to influence the structure of gut microbial communities, but few studies have examined the impacts of environmental changes on microbiotas in free‐ranging animals. Rapid land‐use change has the potential to shift gut micro...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-06-01
|
Series: | Ecology and Evolution |
Subjects: | |
Online Access: | https://doi.org/10.1002/ece3.5228 |
_version_ | 1819177002965401600 |
---|---|
author | Melissa R. Ingala Daniel J. Becker Jacob Bak Holm Karsten Kristiansen Nancy B. Simmons |
author_facet | Melissa R. Ingala Daniel J. Becker Jacob Bak Holm Karsten Kristiansen Nancy B. Simmons |
author_sort | Melissa R. Ingala |
collection | DOAJ |
description | Abstract Host ecological factors and external environmental factors are known to influence the structure of gut microbial communities, but few studies have examined the impacts of environmental changes on microbiotas in free‐ranging animals. Rapid land‐use change has the potential to shift gut microbial communities in wildlife through exposure to novel bacteria and/or by changing the availability or quality of local food resources. The consequences of such changes to host health and fitness remain unknown and may have important implications for pathogen spillover between humans and wildlife. To better understand the consequences of land‐use change on wildlife microbiotas, we analyzed long‐term dietary trends, gut microbiota composition, and innate immune function in common vampire bats (Desmodus rotundus) in two nearby sites in Belize that vary in landscape structure. We found that vampire bats living in a small forest fragment had more homogenous diets indicative of feeding on livestock and shifts in microbiota heterogeneity, but not overall composition, compared to those living in an intact forest reserve. We also found that irrespective of sampling site, vampire bats which consumed relatively more livestock showed shifts in some core bacteria compared with vampire bats which consumed relatively less livestock. The relative abundance of some core microbiota members was associated with innate immune function, suggesting that future research should consider the role of the host microbiota in immune defense and its relationship to zoonotic infection dynamics. We suggest that subsequent homogenization of diet and habitat loss through livestock rearing in the Neotropics may lead to disruption to the microbiota that could have downstream impacts on host immunity and cross‐species pathogen transmission. |
first_indexed | 2024-12-22T21:19:44Z |
format | Article |
id | doaj.art-c71979e033824899a893320671a7862d |
institution | Directory Open Access Journal |
issn | 2045-7758 |
language | English |
last_indexed | 2024-12-22T21:19:44Z |
publishDate | 2019-06-01 |
publisher | Wiley |
record_format | Article |
series | Ecology and Evolution |
spelling | doaj.art-c71979e033824899a893320671a7862d2022-12-21T18:12:14ZengWileyEcology and Evolution2045-77582019-06-019116508652310.1002/ece3.5228Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire batsMelissa R. Ingala0Daniel J. Becker1Jacob Bak Holm2Karsten Kristiansen3Nancy B. Simmons4Richard Gilder Graduate School American Museum of Natural History New York New YorkOdum School of Ecology University of Georgia Athens GeorgiaDepartment of Biology University of Copenhagen Copenhagen DenmarkDepartment of Biology University of Copenhagen Copenhagen DenmarkDivision of Vertebrate Zoology, Department of Mammalogy American Museum of Natural History New York New YorkAbstract Host ecological factors and external environmental factors are known to influence the structure of gut microbial communities, but few studies have examined the impacts of environmental changes on microbiotas in free‐ranging animals. Rapid land‐use change has the potential to shift gut microbial communities in wildlife through exposure to novel bacteria and/or by changing the availability or quality of local food resources. The consequences of such changes to host health and fitness remain unknown and may have important implications for pathogen spillover between humans and wildlife. To better understand the consequences of land‐use change on wildlife microbiotas, we analyzed long‐term dietary trends, gut microbiota composition, and innate immune function in common vampire bats (Desmodus rotundus) in two nearby sites in Belize that vary in landscape structure. We found that vampire bats living in a small forest fragment had more homogenous diets indicative of feeding on livestock and shifts in microbiota heterogeneity, but not overall composition, compared to those living in an intact forest reserve. We also found that irrespective of sampling site, vampire bats which consumed relatively more livestock showed shifts in some core bacteria compared with vampire bats which consumed relatively less livestock. The relative abundance of some core microbiota members was associated with innate immune function, suggesting that future research should consider the role of the host microbiota in immune defense and its relationship to zoonotic infection dynamics. We suggest that subsequent homogenization of diet and habitat loss through livestock rearing in the Neotropics may lead to disruption to the microbiota that could have downstream impacts on host immunity and cross‐species pathogen transmission.https://doi.org/10.1002/ece3.5228Desmodus rotundusdiet homogenizationland‐use changelivestockmicrobiotaresource provisioning |
spellingShingle | Melissa R. Ingala Daniel J. Becker Jacob Bak Holm Karsten Kristiansen Nancy B. Simmons Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats Ecology and Evolution Desmodus rotundus diet homogenization land‐use change livestock microbiota resource provisioning |
title | Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats |
title_full | Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats |
title_fullStr | Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats |
title_full_unstemmed | Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats |
title_short | Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats |
title_sort | habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats |
topic | Desmodus rotundus diet homogenization land‐use change livestock microbiota resource provisioning |
url | https://doi.org/10.1002/ece3.5228 |
work_keys_str_mv | AT melissaringala habitatfragmentationisassociatedwithdietaryshiftsandmicrobiotavariabilityincommonvampirebats AT danieljbecker habitatfragmentationisassociatedwithdietaryshiftsandmicrobiotavariabilityincommonvampirebats AT jacobbakholm habitatfragmentationisassociatedwithdietaryshiftsandmicrobiotavariabilityincommonvampirebats AT karstenkristiansen habitatfragmentationisassociatedwithdietaryshiftsandmicrobiotavariabilityincommonvampirebats AT nancybsimmons habitatfragmentationisassociatedwithdietaryshiftsandmicrobiotavariabilityincommonvampirebats |