Targeted Imaging of Endometriosis and Image-Guided Resection of Lesions Using Gonadotropin-Releasing Hormone Analogue-Modified Indocyanine Green

Objective. In this study, we utilized gonadotropin-releasing hormone analogue-modified indocyanine green (GnRHa-ICG) to improve the accuracy of intraoperative recognition and resection of endometriotic lesions. Methods. Gonadotropin-releasing hormone receptor (GnRHR) expression was detected in endom...

Full description

Bibliographic Details
Main Authors: Jing Peng, Qiyu Liu, Tao Pu, Mingxing Zhang, Meng Zhang, Ming Du, Guiling Li, Xiaoyan Zhang, Congjian Xu
Format: Article
Language:English
Published: SAGE Publications 2023-01-01
Series:Molecular Imaging
Online Access:http://dx.doi.org/10.1155/2023/6674054
Description
Summary:Objective. In this study, we utilized gonadotropin-releasing hormone analogue-modified indocyanine green (GnRHa-ICG) to improve the accuracy of intraoperative recognition and resection of endometriotic lesions. Methods. Gonadotropin-releasing hormone receptor (GnRHR) expression was detected in endometriosis tissues and cell lines via immunohistochemistry and western blotting. The in vitro binding capacities of GnRHa, GnRHa-ICG, and ICG were determined using fluorescence microscopy and flow cytometry. In vivo imaging was performed in mouse models of endometriosis using a near-infrared fluorescence (NIRF) imaging system and fluorescence navigation system. The ex vivo binding capacity was determined using confocal fluorescence microscopy. Results. GnRHa-ICG exhibited a significantly stronger binding capacity to endometriotic cells and tissues than ICG. In mice with endometriosis, GnRHa-ICG specifically imaged endometriotic tissues (EMTs) after intraperitoneal administration, whereas ICG exhibited signals in the intestine. GnRHa-ICG showed the highest fluorescence signals in the EMTs at 2 h and a good signal-to-noise ratio at 48 h postadministration. Compared with traditional surgery under white light, targeted NIRF imaging-guided surgery completely resected endometriotic lesions with a sensitivity of 97.3% and specificity of 77.8%. No obvious toxicity was observed in routine blood tests, serum biochemicals, or histopathology in mice. Conclusions. GnRHa-ICG specifically recognized and localized endometriotic lesions and guided complete resection of lesions with high accuracy.
ISSN:1536-0121