Design of a Low-Reflection Flat Lens Antenna Based on Conformal Transformation Optics
In this paper, a wideband flat lens antenna with low reflection and good performance is presented based on conformal transformation optics (CTO). Physical space optimization is applied to eliminate singular refractive index values. Furthermore, we employ the optical path rescaling method to enhance...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/14/3/558 |
_version_ | 1797610091413766144 |
---|---|
author | Fateme Nazarzadeh Abbas Ali Heidari |
author_facet | Fateme Nazarzadeh Abbas Ali Heidari |
author_sort | Fateme Nazarzadeh |
collection | DOAJ |
description | In this paper, a wideband flat lens antenna with low reflection and good performance is presented based on conformal transformation optics (CTO). Physical space optimization is applied to eliminate singular refractive index values. Furthermore, we employ the optical path rescaling method to enhance the sub-unity refractive indices and to reduce reflection. Therefore, an implementable all-dielectric isotropic medium is obtained. The final flat lens profile comprises six layers with a constant permittivity value in each layer. Simulation results of the three-dimensional structure indicate that the designed flat lens operates in a wide frequency bandwidth. The flat lens antenna has an S<sub>11</sub> value of less than −15 dB in the frequency range of 13 to 30 GHz. The proposed lens was designed and simulated using COMSOL Multiphysics, and radiation performance results were validated using the CST Studio Suite. The simulated radiation pattern shows that the side lobe level is less than −16.5 dB in two simulation software programs, and the half-power beam width varies from 5.6° to 2.7° with increasing frequency. Moreover, the simulated antenna gain is about 28.3–35.5 dBi in the 13–30 GHz frequency range. |
first_indexed | 2024-03-11T06:10:41Z |
format | Article |
id | doaj.art-c73242181c9f44b5bc8fedf837bc2dd6 |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-03-11T06:10:41Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-c73242181c9f44b5bc8fedf837bc2dd62023-11-17T12:42:30ZengMDPI AGMicromachines2072-666X2023-02-0114355810.3390/mi14030558Design of a Low-Reflection Flat Lens Antenna Based on Conformal Transformation OpticsFateme Nazarzadeh0Abbas Ali Heidari1Department of Electrical Engineering, Yazd University, Yazd 8915818411, IranDepartment of Electrical Engineering, Yazd University, Yazd 8915818411, IranIn this paper, a wideband flat lens antenna with low reflection and good performance is presented based on conformal transformation optics (CTO). Physical space optimization is applied to eliminate singular refractive index values. Furthermore, we employ the optical path rescaling method to enhance the sub-unity refractive indices and to reduce reflection. Therefore, an implementable all-dielectric isotropic medium is obtained. The final flat lens profile comprises six layers with a constant permittivity value in each layer. Simulation results of the three-dimensional structure indicate that the designed flat lens operates in a wide frequency bandwidth. The flat lens antenna has an S<sub>11</sub> value of less than −15 dB in the frequency range of 13 to 30 GHz. The proposed lens was designed and simulated using COMSOL Multiphysics, and radiation performance results were validated using the CST Studio Suite. The simulated radiation pattern shows that the side lobe level is less than −16.5 dB in two simulation software programs, and the half-power beam width varies from 5.6° to 2.7° with increasing frequency. Moreover, the simulated antenna gain is about 28.3–35.5 dBi in the 13–30 GHz frequency range.https://www.mdpi.com/2072-666X/14/3/558flat lens antennatransformation optics (TO)conformal transformation optics (CTO)isotropicgraded-index lens |
spellingShingle | Fateme Nazarzadeh Abbas Ali Heidari Design of a Low-Reflection Flat Lens Antenna Based on Conformal Transformation Optics Micromachines flat lens antenna transformation optics (TO) conformal transformation optics (CTO) isotropic graded-index lens |
title | Design of a Low-Reflection Flat Lens Antenna Based on Conformal Transformation Optics |
title_full | Design of a Low-Reflection Flat Lens Antenna Based on Conformal Transformation Optics |
title_fullStr | Design of a Low-Reflection Flat Lens Antenna Based on Conformal Transformation Optics |
title_full_unstemmed | Design of a Low-Reflection Flat Lens Antenna Based on Conformal Transformation Optics |
title_short | Design of a Low-Reflection Flat Lens Antenna Based on Conformal Transformation Optics |
title_sort | design of a low reflection flat lens antenna based on conformal transformation optics |
topic | flat lens antenna transformation optics (TO) conformal transformation optics (CTO) isotropic graded-index lens |
url | https://www.mdpi.com/2072-666X/14/3/558 |
work_keys_str_mv | AT fatemenazarzadeh designofalowreflectionflatlensantennabasedonconformaltransformationoptics AT abbasaliheidari designofalowreflectionflatlensantennabasedonconformaltransformationoptics |