Research on a material for hydrogen purifying and flux controlling with application to space active hydrogen-masers
The Space Active Hydrogen-Maser (SAHM) can be used for the Space Very Long Baseline Interferometry Project to improve the resolution of the space astronomical telescope. The standard frequency signals provided by the SAHM have their stability dependent on the flux of effective H atoms. Therefore, a...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2022-03-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/5.0084176 |
_version_ | 1818394202421067776 |
---|---|
author | Qi Li Xueling Hou Jiayu Dai Zhichun Chen Tiexin Liu Hao Yang |
author_facet | Qi Li Xueling Hou Jiayu Dai Zhichun Chen Tiexin Liu Hao Yang |
author_sort | Qi Li |
collection | DOAJ |
description | The Space Active Hydrogen-Maser (SAHM) can be used for the Space Very Long Baseline Interferometry Project to improve the resolution of the space astronomical telescope. The standard frequency signals provided by the SAHM have their stability dependent on the flux of effective H atoms. Therefore, a nickel (Ni) tube, one end closed, has been designed in this paper for the SAHM as a hydrogen (H2) purification and flux control device. Mechanisms of the H2 purification and flux control by a Ni tube were studied. H2 flux and ΔU, as a function of an input current, are given by experimental analyses. The diffusion activation energy of atomic H is much less than that of other atoms under the same conditions in Ni. The H atoms reversibly diffuse in Ni, and their diffusion speed has a high response to temperature. Experimental research shows that when the temperature of the tube was changed (from 27 to 700 °C), by an input heating electrical current (from 0 to 3.5 A), the H2 flux varied from 0 to 9.18 × 10−10 mol/s and no change in the phase structure of Ni. The data of flux should be useful for the frequency stability performance research of the SAHM. In addition, no phase change of the material indicates a stable performance of the tube for H-purifying and flux controlling. Finally, the above advantages make it a promising candidate for the reliability of the SAHM. |
first_indexed | 2024-12-14T05:57:27Z |
format | Article |
id | doaj.art-c73d9c6837434c9d9a6c7cd3cf276958 |
institution | Directory Open Access Journal |
issn | 2158-3226 |
language | English |
last_indexed | 2024-12-14T05:57:27Z |
publishDate | 2022-03-01 |
publisher | AIP Publishing LLC |
record_format | Article |
series | AIP Advances |
spelling | doaj.art-c73d9c6837434c9d9a6c7cd3cf2769582022-12-21T23:14:31ZengAIP Publishing LLCAIP Advances2158-32262022-03-01123035207035207-510.1063/5.0084176Research on a material for hydrogen purifying and flux controlling with application to space active hydrogen-masersQi Li0Xueling Hou1Jiayu Dai2Zhichun Chen3Tiexin Liu4Hao Yang5School of Materials Science and Engineering, Shanghai University, Shanghai 200072, ChinaSchool of Materials Science and Engineering, Shanghai University, Shanghai 200072, ChinaShanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, ChinaShanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, ChinaShanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, ChinaShanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, ChinaThe Space Active Hydrogen-Maser (SAHM) can be used for the Space Very Long Baseline Interferometry Project to improve the resolution of the space astronomical telescope. The standard frequency signals provided by the SAHM have their stability dependent on the flux of effective H atoms. Therefore, a nickel (Ni) tube, one end closed, has been designed in this paper for the SAHM as a hydrogen (H2) purification and flux control device. Mechanisms of the H2 purification and flux control by a Ni tube were studied. H2 flux and ΔU, as a function of an input current, are given by experimental analyses. The diffusion activation energy of atomic H is much less than that of other atoms under the same conditions in Ni. The H atoms reversibly diffuse in Ni, and their diffusion speed has a high response to temperature. Experimental research shows that when the temperature of the tube was changed (from 27 to 700 °C), by an input heating electrical current (from 0 to 3.5 A), the H2 flux varied from 0 to 9.18 × 10−10 mol/s and no change in the phase structure of Ni. The data of flux should be useful for the frequency stability performance research of the SAHM. In addition, no phase change of the material indicates a stable performance of the tube for H-purifying and flux controlling. Finally, the above advantages make it a promising candidate for the reliability of the SAHM.http://dx.doi.org/10.1063/5.0084176 |
spellingShingle | Qi Li Xueling Hou Jiayu Dai Zhichun Chen Tiexin Liu Hao Yang Research on a material for hydrogen purifying and flux controlling with application to space active hydrogen-masers AIP Advances |
title | Research on a material for hydrogen purifying and flux controlling with application to space active hydrogen-masers |
title_full | Research on a material for hydrogen purifying and flux controlling with application to space active hydrogen-masers |
title_fullStr | Research on a material for hydrogen purifying and flux controlling with application to space active hydrogen-masers |
title_full_unstemmed | Research on a material for hydrogen purifying and flux controlling with application to space active hydrogen-masers |
title_short | Research on a material for hydrogen purifying and flux controlling with application to space active hydrogen-masers |
title_sort | research on a material for hydrogen purifying and flux controlling with application to space active hydrogen masers |
url | http://dx.doi.org/10.1063/5.0084176 |
work_keys_str_mv | AT qili researchonamaterialforhydrogenpurifyingandfluxcontrollingwithapplicationtospaceactivehydrogenmasers AT xuelinghou researchonamaterialforhydrogenpurifyingandfluxcontrollingwithapplicationtospaceactivehydrogenmasers AT jiayudai researchonamaterialforhydrogenpurifyingandfluxcontrollingwithapplicationtospaceactivehydrogenmasers AT zhichunchen researchonamaterialforhydrogenpurifyingandfluxcontrollingwithapplicationtospaceactivehydrogenmasers AT tiexinliu researchonamaterialforhydrogenpurifyingandfluxcontrollingwithapplicationtospaceactivehydrogenmasers AT haoyang researchonamaterialforhydrogenpurifyingandfluxcontrollingwithapplicationtospaceactivehydrogenmasers |