Application of Statistical K-Means Algorithm for University Academic Evaluation

With the globalization of higher education, academic evaluation is increasingly valued by the scientific and educational circles. Although the number of published papers of academic evaluation methods is increasing, previous research mainly focused on the method of assigning different weights for va...

Full description

Bibliographic Details
Main Authors: Daohua Yu, Xin Zhou, Yu Pan, Zhendong Niu, Huafei Sun
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/7/1004
Description
Summary:With the globalization of higher education, academic evaluation is increasingly valued by the scientific and educational circles. Although the number of published papers of academic evaluation methods is increasing, previous research mainly focused on the method of assigning different weights for various indicators, which can be subjective and limited. This paper investigates the evaluation of academic performance by using the statistical K-means (SKM) algorithm to produce clusters. The core idea is mapping the evaluation data from Euclidean space to Riemannian space in which the geometric structure can be used to obtain accurate clustering results. The method can adapt to different indicators and make full use of big data. By using the K-means algorithm based on statistical manifolds, the academic evaluation results of universities can be obtained. Furthermore, through simulation experiments on the top 20 universities of China with the traditional K-means, GMM and SKM algorithms, respectively, we analyze the advantages and disadvantages of different methods. We also test the three algorithms on a UCI ML dataset. The simulation results show the advantages of the SKM algorithm.
ISSN:1099-4300