On Some Properties of the Limit Points of (<i>z</i>(<i>n</i>)/<i>n</i>)<sub><i>n</i></sub>

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><...

Full description

Bibliographic Details
Main Authors: Eva Trojovská, Kandasamy Venkatachalam
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/16/1931
_version_ 1797523017815818240
author Eva Trojovská
Kandasamy Venkatachalam
author_facet Eva Trojovská
Kandasamy Venkatachalam
author_sort Eva Trojovská
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> be the sequence of Fibonacci numbers. The order of appearance of an integer <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mo movablelimits="true" form="prefix">min</mo><mrow><mo>{</mo><mi>k</mi><mo>≥</mo><mn>1</mn><mo>:</mo><mi>n</mi><mo>∣</mo><msub><mi>F</mi><mi>k</mi></msub><mo>}</mo></mrow></mrow></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup></semantics></math></inline-formula> be the set of all limit points of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mi>z</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><mi>n</mi><mo>:</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula>. By some theoretical results on the growth of the sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><mi>z</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>, we gain a better understanding of the topological structure of the derived set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup></semantics></math></inline-formula>. For instance, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><mn>2</mn><mo>}</mo></mrow><mo>⊆</mo><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup><mo>⊆</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup></semantics></math></inline-formula> does not have any interior points. A recent result of Trojovská implies the existence of a positive real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup><mo>∩</mo><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the empty set. In this paper, we improve this result by proving that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mfrac><mn>12</mn><mn>7</mn></mfrac><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is the largest subinterval of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula> which does not intersect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup></semantics></math></inline-formula>. In addition, we show a connection between the sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mo>)</mo></mrow><mi>n</mi></msub></semantics></math></inline-formula>, for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>/</mo><msub><mi>x</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> tends to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> (as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></semantics></math></inline-formula>), and the number of preimages of <i>r</i> under the map <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>↦</mo><mi>z</mi><mo>(</mo><mi>m</mi><mo>)</mo><mo>/</mo><mi>m</mi></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T08:37:27Z
format Article
id doaj.art-c748cfa3960743cb8221264edb514dfc
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T08:37:27Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c748cfa3960743cb8221264edb514dfc2023-11-22T08:34:03ZengMDPI AGMathematics2227-73902021-08-01916193110.3390/math9161931On Some Properties of the Limit Points of (<i>z</i>(<i>n</i>)/<i>n</i>)<sub><i>n</i></sub>Eva Trojovská0Kandasamy Venkatachalam1Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicDepartment of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>F</mi><mi>n</mi></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> be the sequence of Fibonacci numbers. The order of appearance of an integer <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mo movablelimits="true" form="prefix">min</mo><mrow><mo>{</mo><mi>k</mi><mo>≥</mo><mn>1</mn><mo>:</mo><mi>n</mi><mo>∣</mo><msub><mi>F</mi><mi>k</mi></msub><mo>}</mo></mrow></mrow></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup></semantics></math></inline-formula> be the set of all limit points of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mi>z</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>/</mo><mi>n</mi><mo>:</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula>. By some theoretical results on the growth of the sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><mi>z</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>, we gain a better understanding of the topological structure of the derived set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup></semantics></math></inline-formula>. For instance, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mo>,</mo><mn>2</mn><mo>}</mo></mrow><mo>⊆</mo><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup><mo>⊆</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup></semantics></math></inline-formula> does not have any interior points. A recent result of Trojovská implies the existence of a positive real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup><mo>∩</mo><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is the empty set. In this paper, we improve this result by proving that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mfrac><mn>12</mn><mn>7</mn></mfrac><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is the largest subinterval of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula> which does not intersect <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">Z</mi><mo>′</mo></msup></semantics></math></inline-formula>. In addition, we show a connection between the sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mo>)</mo></mrow><mi>n</mi></msub></semantics></math></inline-formula>, for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>/</mo><msub><mi>x</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> tends to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> (as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></semantics></math></inline-formula>), and the number of preimages of <i>r</i> under the map <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>↦</mo><mi>z</mi><mo>(</mo><mi>m</mi><mo>)</mo><mo>/</mo><mi>m</mi></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/9/16/1931order of appearancefibonacci numbersderived setgreatest prime factornatural density
spellingShingle Eva Trojovská
Kandasamy Venkatachalam
On Some Properties of the Limit Points of (<i>z</i>(<i>n</i>)/<i>n</i>)<sub><i>n</i></sub>
Mathematics
order of appearance
fibonacci numbers
derived set
greatest prime factor
natural density
title On Some Properties of the Limit Points of (<i>z</i>(<i>n</i>)/<i>n</i>)<sub><i>n</i></sub>
title_full On Some Properties of the Limit Points of (<i>z</i>(<i>n</i>)/<i>n</i>)<sub><i>n</i></sub>
title_fullStr On Some Properties of the Limit Points of (<i>z</i>(<i>n</i>)/<i>n</i>)<sub><i>n</i></sub>
title_full_unstemmed On Some Properties of the Limit Points of (<i>z</i>(<i>n</i>)/<i>n</i>)<sub><i>n</i></sub>
title_short On Some Properties of the Limit Points of (<i>z</i>(<i>n</i>)/<i>n</i>)<sub><i>n</i></sub>
title_sort on some properties of the limit points of i z i i n i i n i sub i n i sub
topic order of appearance
fibonacci numbers
derived set
greatest prime factor
natural density
url https://www.mdpi.com/2227-7390/9/16/1931
work_keys_str_mv AT evatrojovska onsomepropertiesofthelimitpointsofiziiniinisubinisub
AT kandasamyvenkatachalam onsomepropertiesofthelimitpointsofiziiniinisubinisub