Robust multi-view clustering algorithm based on sparse consensus graph decomposition(基于稀疏一致图分解的鲁棒多视图聚类算法)
由于数据形式日益复杂,陆续涌现了大量多视图聚类算法。但现有方法存在计算复杂度较高、需要额外的后续处理步骤、构造的相似图非最优等缺点。基于此,首先提出一种基于稀疏一致图分解的单视图聚类算法,然后将其扩展为多视图聚类算法,考虑不同视图对最终结果的贡献不同,对每个视图分配适当的权重,同时利用L2.1范数,得到性能更优的一致图,在一致图基础上学习非负表示矩阵,经交替迭代得到聚类结果。最后在多个数据集上进行比较实验,验证了该算法的有效性。...
Main Author: | |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2023-09-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2023.05.008 |
_version_ | 1797232935592525824 |
---|---|
author | 耿莉(GENG Li) 耿莉(GENG Li) |
author_facet | 耿莉(GENG Li) 耿莉(GENG Li) |
author_sort | 耿莉(GENG Li) |
collection | DOAJ |
description | 由于数据形式日益复杂,陆续涌现了大量多视图聚类算法。但现有方法存在计算复杂度较高、需要额外的后续处理步骤、构造的相似图非最优等缺点。基于此,首先提出一种基于稀疏一致图分解的单视图聚类算法,然后将其扩展为多视图聚类算法,考虑不同视图对最终结果的贡献不同,对每个视图分配适当的权重,同时利用L2.1范数,得到性能更优的一致图,在一致图基础上学习非负表示矩阵,经交替迭代得到聚类结果。最后在多个数据集上进行比较实验,验证了该算法的有效性。 |
first_indexed | 2024-04-24T16:08:11Z |
format | Article |
id | doaj.art-c74bd0d62bcc468697528b8a493124e5 |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T16:08:11Z |
publishDate | 2023-09-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-c74bd0d62bcc468697528b8a493124e52024-04-01T01:52:11ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972023-09-0150556957910.3785/j.issn.1008-9497.2023.05.008Robust multi-view clustering algorithm based on sparse consensus graph decomposition(基于稀疏一致图分解的鲁棒多视图聚类算法)耿莉(GENG Li)0https://orcid.org/0000-0002-8051-5236耿莉(GENG Li)1https://orcid.org/0000-0001-8603-9704School of Science, Chang'an University, Xi'an 710064, China(长安大学 理学院,陕西 西安 710064)School of Science, Chang'an University, Xi'an 710064, China(长安大学 理学院,陕西 西安 710064)由于数据形式日益复杂,陆续涌现了大量多视图聚类算法。但现有方法存在计算复杂度较高、需要额外的后续处理步骤、构造的相似图非最优等缺点。基于此,首先提出一种基于稀疏一致图分解的单视图聚类算法,然后将其扩展为多视图聚类算法,考虑不同视图对最终结果的贡献不同,对每个视图分配适当的权重,同时利用L2.1范数,得到性能更优的一致图,在一致图基础上学习非负表示矩阵,经交替迭代得到聚类结果。最后在多个数据集上进行比较实验,验证了该算法的有效性。https://doi.org/10.3785/j.issn.1008-9497.2023.05.008 |
spellingShingle | 耿莉(GENG Li) 耿莉(GENG Li) Robust multi-view clustering algorithm based on sparse consensus graph decomposition(基于稀疏一致图分解的鲁棒多视图聚类算法) Zhejiang Daxue xuebao. Lixue ban |
title | Robust multi-view clustering algorithm based on sparse consensus graph decomposition(基于稀疏一致图分解的鲁棒多视图聚类算法) |
title_full | Robust multi-view clustering algorithm based on sparse consensus graph decomposition(基于稀疏一致图分解的鲁棒多视图聚类算法) |
title_fullStr | Robust multi-view clustering algorithm based on sparse consensus graph decomposition(基于稀疏一致图分解的鲁棒多视图聚类算法) |
title_full_unstemmed | Robust multi-view clustering algorithm based on sparse consensus graph decomposition(基于稀疏一致图分解的鲁棒多视图聚类算法) |
title_short | Robust multi-view clustering algorithm based on sparse consensus graph decomposition(基于稀疏一致图分解的鲁棒多视图聚类算法) |
title_sort | robust multi view clustering algorithm based on sparse consensus graph decomposition 基于稀疏一致图分解的鲁棒多视图聚类算法 |
url | https://doi.org/10.3785/j.issn.1008-9497.2023.05.008 |
work_keys_str_mv | AT gěnglìgengli robustmultiviewclusteringalgorithmbasedonsparseconsensusgraphdecompositionjīyúxīshūyīzhìtúfēnjiědelǔbàngduōshìtújùlèisuànfǎ AT gěnglìgengli robustmultiviewclusteringalgorithmbasedonsparseconsensusgraphdecompositionjīyúxīshūyīzhìtúfēnjiědelǔbàngduōshìtújùlèisuànfǎ |